(n,t)-Copresented Modules and (n,t)-Cocoherent Rings

Gespeichert in:
Bibliographische Detailangaben
Titel: (n,t)-Copresented Modules and (n,t)-Cocoherent Rings
Autoren: Moulium R Njikam, Mungwa S Tii, R Atanga, Stephen Mbigha Ghogomu
Quelle: Journal of the Cameroon Academy of Sciences; Vol 12, No 3 (2015); 207-220
Journal of the Cameroon Academy of Sciences; Vol 12, No 3 (2015); 177-185
Journal of the Cameroon Academy of Sciences; Vol 12, No 3 (2015); 235-248
Journal of the Cameroon Academy of Sciences; Vol 12, No 3 (2015); 180-205
Journal of the Cameroon Academy of Sciences; Vol 12, No 3 (2015); 223-234
Journal of the Cameroon Academy of Sciences; Vol 12, No 3 (2015); 173-175
Verlagsinformationen: Cameroon Academy of Sciences, 2015.
Publikationsjahr: 2015
Schlagwörter: Dubbing, Audiovisual Translation (AVT), 05 social sciences, 02 engineering and technology, Modèle de propagation, racine carrée de l'erreur quadratique moyenne, régression linéaire, algorithmes génétiques, optimisation par essaim de particules, recuit simulé, algorithme de Newton de second ordre, 06 humanities and the arts, t-finitely cogenerated modules, t-finitely copresented modules, (n,t)-copresented modules, (n,t)-coherent rings, (n,0,t)-projective modules, (n,t)-cocoherent rings MSC2000:16D10, 16D80, 16E30, 16E60, 16S90, 18G05, 01 natural sciences, 6. Clean water, 0506 political science, 3. Good health, 03 medical and health sciences, 0302 clinical medicine, 13. Climate action, 0502 economics and business, 0602 languages and literature, 0202 electrical engineering, electronic engineering, information engineering, Diabetes, Hypertension, Angiotensin converting enzyme, Insertion deletion, Genetic polymorphism, Assessment, Dynamic Assessment, Zone of Proximal Development, Interventionist Dynamic Assessment, Interactionist Dynamic Assessment, 0101 mathematics, 0503 education, sachet water, potability, physico-chemical, microbial, quality, 0105 earth and related environmental sciences
Beschreibung: In this paper, for some hereditary torsion theory (T, F) with associated torsion radical t, the concepts of t-finitely cogenerated (t-fcg) modules and t-finitely copresented (t-fcp) modules are introduced as duals of t-finitely generated modules and t-finitely presented modules, respectively, of M. F. Jones (1982). These concepts also generalize the notions of cofinitely generated and cofinitely related modules. using the idea of t-finitely cogenerated module, the notion of (n, t)-copresented modules is introduced for some non-negative integer n. This notion of (n, t)-copresented modules is dual to (n, t)-presented modules studied by Dor and Mbuntum (2015) and generalizes the notion of n-copresented modules by Bennis et al (2012). In this process, we characterize t-finitely copresented modules (t-fcp), (n, t)- copresented modules, (n, t)-cocoherent rings and (n, 0,t)-projective modules.Key Words: t-finitely cogenerated modules, t-finitely copresented modules, (n,t)-copresented modules, (n,t)-coherent rings, (n,0,t)-projective modules, (n,t)-cocoherent rings MSC2000:16D10, 16D80, 16E30, 16E60, 16S90, 18G05 Dans cet article, pour certaine théorie de torsion héréditaire (T, F) associée au radical t, les notions de modules t-finiment coengendré et modules t-finiment coprésentés sont introduites comme des duaux de modules t-finiment engendré et modules t-finiment présentés de Jones (1982) respectivement. Ce notions généralisent aussi les concepts de modules cofiniment engendré et cofiniment relies. Se basant sur l’idée de module t-finiment coengendré, la notion de module (n, t) – coprésenté est introduite pour des entiers positifs n. Cette notion de module (n, t) – coprésenté est duale de celle de module (n, t) – présenté considéree par Dor et Mbuntum (2015) et généralise la notion de module n –coprésenté de Bennis et al (2012). Dans cette optique, nous caractérisons les modules t-finiment coprésentés, les modules (n, t) coprésentés, les anneaux (n, t) – cocohérents et les modules (n,0,t)-projectifs.Mots Clés: modules t-finiment coengendré, modules t-finiment copéesentés, modules (n, t) –coprésentés, modules (n,0,t)-projectifs, anneaux (n, t) – cocohérents
Publikationsart: Article
Dateibeschreibung: application/pdf
Sprache: English
ISSN: 2617-3948
DOI: 10.4314/jcas.v12i3
Zugangs-URL: https://www.ajol.info/index.php/jcas/article/view/130648
https://www.ajol.info/index.php/jcas/article/view/130641
https://www.ajol.info/index.php/jcas/article/view/130650
https://www.ajol.info/index.php/jcas/article/view/130644
https://www.ajol.info/index.php/jcas/article/view/130649
https://www.ajol.info/index.php/jcas/article/view/130637
https://www.ajol.info/index.php/jcas/article/view/130637
https://www.ajol.info/index.php/jcas/article/download/130637/120215
https://www.africaneditors.org/journal/JCAS/abstract/41514-79139
https://www.ajol.info/index.php/jcas/article/download/130650/120228
https://www.africaneditors.org/journal/JCAS/abstract/21659-79149
https://www.ajol.info/index.php/jcas/article/view/130650
https://www.ajol.info/index.php/jcas/article/view/130648
https://www.ajol.info/index.php/jcas/article/download/130648/120226
https://www.ajol.info/index.php/jcas/article/view/130641
https://www.ajol.info/index.php/jcas/article/view/130641/120219
https://www.africaneditors.org/journal/JCAS/abstract/65570-79147
https://www.ajol.info/index.php/jcas/article/view/130649/120227
https://www.ajol.info/index.php/jcas/article/view/130649
https://www.africaneditors.org/journal/JCAS/abstract/82928-79143
https://www.ajol.info/index.php/jcas/article/view/130644
https://www.ajol.info/index.php/jcas/article/download/130644/120222
Dokumentencode: edsair.dedup.wf.002..2386f377e462985b0dfb8934dd574f9b
Datenbank: OpenAIRE
Beschreibung
Abstract:In this paper, for some hereditary torsion theory (T, F) with associated torsion radical t, the concepts of t-finitely cogenerated (t-fcg) modules and t-finitely copresented (t-fcp) modules are introduced as duals of t-finitely generated modules and t-finitely presented modules, respectively, of M. F. Jones (1982). These concepts also generalize the notions of cofinitely generated and cofinitely related modules. using the idea of t-finitely cogenerated module, the notion of (n, t)-copresented modules is introduced for some non-negative integer n. This notion of (n, t)-copresented modules is dual to (n, t)-presented modules studied by Dor and Mbuntum (2015) and generalizes the notion of n-copresented modules by Bennis et al (2012). In this process, we characterize t-finitely copresented modules (t-fcp), (n, t)- copresented modules, (n, t)-cocoherent rings and (n, 0,t)-projective modules.Key Words: t-finitely cogenerated modules, t-finitely copresented modules, (n,t)-copresented modules, (n,t)-coherent rings, (n,0,t)-projective modules, (n,t)-cocoherent rings MSC2000:16D10, 16D80, 16E30, 16E60, 16S90, 18G05 Dans cet article, pour certaine théorie de torsion héréditaire (T, F) associée au radical t, les notions de modules t-finiment coengendré et modules t-finiment coprésentés sont introduites comme des duaux de modules t-finiment engendré et modules t-finiment présentés de Jones (1982) respectivement. Ce notions généralisent aussi les concepts de modules cofiniment engendré et cofiniment relies. Se basant sur l’idée de module t-finiment coengendré, la notion de module (n, t) – coprésenté est introduite pour des entiers positifs n. Cette notion de module (n, t) – coprésenté est duale de celle de module (n, t) – présenté considéree par Dor et Mbuntum (2015) et généralise la notion de module n –coprésenté de Bennis et al (2012). Dans cette optique, nous caractérisons les modules t-finiment coprésentés, les modules (n, t) coprésentés, les anneaux (n, t) – cocohérents et les modules (n,0,t)-projectifs.Mots Clés: modules t-finiment coengendré, modules t-finiment copéesentés, modules (n, t) –coprésentés, modules (n,0,t)-projectifs, anneaux (n, t) – cocohérents
ISSN:26173948
DOI:10.4314/jcas.v12i3