new applications of nearest neighbor chains euclidean tsp and motorcycle graphs

Saved in:
Bibliographic Details
Title: new applications of nearest neighbor chains euclidean tsp and motorcycle graphs
Authors: Mamano, Nil, Efrat, Alon, Eppstein, David, Frishberg, Daniel, Goodrich, Michael T., Kobourov, Stephen, Matias, Pedro, Polishchuk, Valentin
Contributors: Nil Mamano and Alon Efrat and David Eppstein and Daniel Frishberg and Michael T. Goodrich and Stephen Kobourov and Pedro Matias and Valentin Polishchuk
Publisher Information: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019.
Publication Year: 2019
Subject Terms: multi-fragment algorithm, Steiner TSP, motorcycle graph, ddc:004, Euclidean TSP, Nearest-neighbors, straight skeleton, Nearest-neighbor chain
Description: We show new applications of the nearest-neighbor chain algorithm, a technique that originated in agglomerative hierarchical clustering. We use it to construct the greedy multi-fragment tour for Euclidean TSP in O(n log n) time in any fixed dimension and for Steiner TSP in planar graphs in O(n sqrt(n)log n) time; we compute motorcycle graphs, a central step in straight skeleton algorithms, in O(n^(4/3+epsilon)) time for any epsilon>0.
Document Type: Article
Conference object
File Description: application/pdf
DOI: 10.4230/lipics.isaac.2019.51
Access URL: https://dblp.uni-trier.de/db/conf/isaac/isaac2019.html#MamanoEEFGKMP19
https://drops.dagstuhl.de/opus/volltexte/2019/11547/
https://drops.dagstuhl.de/opus/volltexte/2019/11547/pdf/LIPIcs-ISAAC-2019-51.pdf/
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1461902
https://arizona.pure.elsevier.com/en/publications/new-applications-of-nearest-neighbor-chains-euclidean-tsp-and-mot
https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.51
Rights: CC BY
Accession Number: edsair.dedup.wf.002..039d6c8469e1ff8639d7f44d6d30fecc
Database: OpenAIRE
Description
Abstract:We show new applications of the nearest-neighbor chain algorithm, a technique that originated in agglomerative hierarchical clustering. We use it to construct the greedy multi-fragment tour for Euclidean TSP in O(n log n) time in any fixed dimension and for Steiner TSP in planar graphs in O(n sqrt(n)log n) time; we compute motorcycle graphs, a central step in straight skeleton algorithms, in O(n^(4/3+epsilon)) time for any epsilon>0.
DOI:10.4230/lipics.isaac.2019.51