new applications of nearest neighbor chains euclidean tsp and motorcycle graphs
Saved in:
| Title: | new applications of nearest neighbor chains euclidean tsp and motorcycle graphs |
|---|---|
| Authors: | Mamano, Nil, Efrat, Alon, Eppstein, David, Frishberg, Daniel, Goodrich, Michael T., Kobourov, Stephen, Matias, Pedro, Polishchuk, Valentin |
| Contributors: | Nil Mamano and Alon Efrat and David Eppstein and Daniel Frishberg and Michael T. Goodrich and Stephen Kobourov and Pedro Matias and Valentin Polishchuk |
| Publisher Information: | Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2019. |
| Publication Year: | 2019 |
| Subject Terms: | multi-fragment algorithm, Steiner TSP, motorcycle graph, ddc:004, Euclidean TSP, Nearest-neighbors, straight skeleton, Nearest-neighbor chain |
| Description: | We show new applications of the nearest-neighbor chain algorithm, a technique that originated in agglomerative hierarchical clustering. We use it to construct the greedy multi-fragment tour for Euclidean TSP in O(n log n) time in any fixed dimension and for Steiner TSP in planar graphs in O(n sqrt(n)log n) time; we compute motorcycle graphs, a central step in straight skeleton algorithms, in O(n^(4/3+epsilon)) time for any epsilon>0. |
| Document Type: | Article Conference object |
| File Description: | application/pdf |
| DOI: | 10.4230/lipics.isaac.2019.51 |
| Access URL: | https://dblp.uni-trier.de/db/conf/isaac/isaac2019.html#MamanoEEFGKMP19 https://drops.dagstuhl.de/opus/volltexte/2019/11547/ https://drops.dagstuhl.de/opus/volltexte/2019/11547/pdf/LIPIcs-ISAAC-2019-51.pdf/ http://www.diva-portal.org/smash/record.jsf?pid=diva2:1461902 https://arizona.pure.elsevier.com/en/publications/new-applications-of-nearest-neighbor-chains-euclidean-tsp-and-mot https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2019.51 |
| Rights: | CC BY |
| Accession Number: | edsair.dedup.wf.002..039d6c8469e1ff8639d7f44d6d30fecc |
| Database: | OpenAIRE |
| Abstract: | We show new applications of the nearest-neighbor chain algorithm, a technique that originated in agglomerative hierarchical clustering. We use it to construct the greedy multi-fragment tour for Euclidean TSP in O(n log n) time in any fixed dimension and for Steiner TSP in planar graphs in O(n sqrt(n)log n) time; we compute motorcycle graphs, a central step in straight skeleton algorithms, in O(n^(4/3+epsilon)) time for any epsilon>0. |
|---|---|
| DOI: | 10.4230/lipics.isaac.2019.51 |
Nájsť tento článok vo Web of Science