About regular measures with values in ordered space
Uloženo v:
| Název: | About regular measures with values in ordered space |
|---|---|
| Autoři: | Hrachovina, Ervín |
| Informace o vydavateli: | Vydavatel'stvo Obzor N.P., Bratislava |
| Témata: | every quasi-regular weakly (\(\sigma \) ,\(\infty )\)-distributive vector lattice-valued Borel measure on a compact Hausdorff space is regular, every quasi-regular weakly (\(\sigma \) ,\(\infty )\)-distributive vector, regular, Set functions, measures and integrals with values in ordered spaces, lattice-valued Borel measure on a compact Hausdorff space is |
| Popis: | The author proves the result that every quasi-regular weakly (\(\sigma\),\(\infty)\)-distributive vector lattice-valued Borel measure on a compact Hausdorff space is regular, its original proof due to J. D. M. Wright being incorrect. In the reviewer's paper 'On vector lattice-valued measures II'' J. Aust. Math. Soc. 40 (1986) is given a generalization of this result to locally compact Hausdorff spaces. |
| Druh dokumentu: | Article |
| Popis souboru: | application/xml |
| Přístupová URL adresa: | https://zbmath.org/3920856 |
| Přístupové číslo: | edsair.c2b0b933574d..e2c6540d7a96b169c52eceb2bb782c8b |
| Databáze: | OpenAIRE |
Buďte první, kdo okomentuje tento záznam!
Nájsť tento článok vo Web of Science