Dimensions of the projective indecomposable modules over classical 0- Hecke algebras

Saved in:
Bibliographic Details
Title: Dimensions of the projective indecomposable modules over classical 0- Hecke algebras
Authors: Chen, Chengdong
Publisher Information: Science in China Press, Beijing; Springer, Heidelberg
Subject Terms: Representation theory for linear algebraic groups, projective indecomposable modules, Other geometric groups, including crystallographic groups, system of simple roots, Weyl group, dimension formulas, Representations of finite groups of Lie type, Simple, semisimple, reductive (super)algebras, 0-Hecke algebra
Description: Let \(W\) be a classical Weyl group and \(\Pi\) be the corresponding system of simple roots. For \(w\in W\), let \(R(w)=\{\alpha\in\Pi\mid \ell(ws_ \alpha)
Document Type: Article
File Description: application/xml
Access URL: https://zbmath.org/95711
Accession Number: edsair.c2b0b933574d..b426051d895a3fd584b843395f463a98
Database: OpenAIRE
Description
Abstract:Let \(W\) be a classical Weyl group and \(\Pi\) be the corresponding system of simple roots. For \(w\in W\), let \(R(w)=\{\alpha\in\Pi\mid \ell(ws_ \alpha)