Dimensions of the projective indecomposable modules over classical 0- Hecke algebras

Uloženo v:
Podrobná bibliografie
Název: Dimensions of the projective indecomposable modules over classical 0- Hecke algebras
Autoři: Chen, Chengdong
Informace o vydavateli: Science in China Press, Beijing; Springer, Heidelberg
Témata: Representation theory for linear algebraic groups, projective indecomposable modules, Other geometric groups, including crystallographic groups, system of simple roots, Weyl group, dimension formulas, Representations of finite groups of Lie type, Simple, semisimple, reductive (super)algebras, 0-Hecke algebra
Popis: Let \(W\) be a classical Weyl group and \(\Pi\) be the corresponding system of simple roots. For \(w\in W\), let \(R(w)=\{\alpha\in\Pi\mid \ell(ws_ \alpha)
Druh dokumentu: Article
Popis souboru: application/xml
Přístupová URL adresa: https://zbmath.org/95711
Přístupové číslo: edsair.c2b0b933574d..b426051d895a3fd584b843395f463a98
Databáze: OpenAIRE
Popis
Abstrakt:Let \(W\) be a classical Weyl group and \(\Pi\) be the corresponding system of simple roots. For \(w\in W\), let \(R(w)=\{\alpha\in\Pi\mid \ell(ws_ \alpha)