\(\mathcal M\)-harmonic Bloch functions on the ball

Uložené v:
Podrobná bibliografia
Názov: \(\mathcal M\)-harmonic Bloch functions on the ball
Autori: Lee, Young Joo
Informácie o vydavateľovi: Springer India, New Delhi, Delhi, India; Indian National Science Academy, New Delhi, Delhi, India
Predmety: \(M\)-harmonic functions, Bloch functions, Harmonic, subharmonic, superharmonic functions in higher dimensions, Bloch functions, normal functions of several complex variables, Normal families of holomorphic functions, mappings of several complex variables, and related topics (taut manifolds etc.)
Popis: The author studies the \(M\)-harmonic functions on the unit ball of the \(n\)-dimensional complex space. Among other things, he shows that a function is an \(M\)-harmonic Bloch function if and only if the family \(\{f\circ \varphi- f\circ \varphi(0): \varphi\in A\}\) is normal. Here, \(A\) denotes the group of all automorphisms of the unit ball.
Druh dokumentu: Article
Popis súboru: application/xml
Prístupová URL adresa: https://zbmath.org/1785859
Prístupové číslo: edsair.c2b0b933574d..9c55388dd2c9d616a85f331b0d55752f
Databáza: OpenAIRE
Popis
Abstrakt:The author studies the \(M\)-harmonic functions on the unit ball of the \(n\)-dimensional complex space. Among other things, he shows that a function is an \(M\)-harmonic Bloch function if and only if the family \(\{f\circ \varphi- f\circ \varphi(0): \varphi\in A\}\) is normal. Here, \(A\) denotes the group of all automorphisms of the unit ball.