Asymptotic series and algebroid functions

Gespeichert in:
Bibliographische Detailangaben
Titel: Asymptotic series and algebroid functions
Autoren: Levin, B. Ya., Ronkin, A. L.
Verlagsinformationen: American Mathematical Society (AMS), Providence, RI
Schlagwörter: Asymptotic representations in the complex plane, Ritt theorems, meromorphic functions, algebroidal function, Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable, quasi- polynomial, Entire and meromorphic functions of one complex variable, and related topics
Beschreibung: The main result of this very saturated note is the following theorem. Let the coefficients \(P_{\ell}(z)\) of the equation \[ (1)\quad P_ 0(z)w^ n+P_ 1(z)w^{n-1}+...+P_ n(z)=0 \] admit in an angle \(S_{\beta}\equiv S_{0,\beta}\), \(S_{\phi,\beta}=\{z:\) \(| \arg z- \phi | \pi)\) and let the set \(\{\lambda_{j\ell}\}\) be separated. Then for some \(\alpha
Publikationsart: Article
Dateibeschreibung: application/xml
Zugangs-URL: https://zbmath.org/3959888
Dokumentencode: edsair.c2b0b933574d..3c36b30b02bee67ea5fd2d17d3d2fbc4
Datenbank: OpenAIRE
Beschreibung
Abstract:The main result of this very saturated note is the following theorem. Let the coefficients \(P_{\ell}(z)\) of the equation \[ (1)\quad P_ 0(z)w^ n+P_ 1(z)w^{n-1}+...+P_ n(z)=0 \] admit in an angle \(S_{\beta}\equiv S_{0,\beta}\), \(S_{\phi,\beta}=\{z:\) \(| \arg z- \phi | \pi)\) and let the set \(\{\lambda_{j\ell}\}\) be separated. Then for some \(\alpha