Möbius invariant gradient and \(\alpha\)-Bloch functions

Saved in:
Bibliographic Details
Title: Möbius invariant gradient and \(\alpha\)-Bloch functions
Authors: Zhuo, Wenxin, Pan, Yongjuan
Publisher Information: Zhejiang University Press, Hangzhou
Subject Terms: \(\alpha\)-Bloch functions, M-invariant gradient, Bloch functions, normal functions of several complex variables
Description: Summary: Invariant gradient characterizations of \(\alpha\)-Bloch functions in the unit ball of \(\mathbb{C}^n\) are studied and it is proved that for \(f\in H(B)\), \(f\in{\mathcal B}^a\) if and only if \[ \sup_{a\in B} {1\over v(E(a,r))} \int_{E(a,r)} |\widetilde\nabla f(z)|^p(1-|z|^2)^{p(\alpha- 1)} dv(z)< \infty; \] or \[ \sup_{a\in B} \int_B(1-|z|^2)^{p(\alpha- 1)} |\widetilde\nabla f(z)|^p(1- |\varphi_a(z)|^2)^{nq} d\lambda(z)
Document Type: Article
File Description: application/xml
Access URL: https://zbmath.org/1895014
Accession Number: edsair.c2b0b933574d..26ee4b2bd60f13fa21556697a1c57afc
Database: OpenAIRE
Be the first to leave a comment!
You must be logged in first