Podrobná bibliografia
| Názov: |
Möbius invariant gradient and \(\alpha\)-Bloch functions |
| Autori: |
Zhuo, Wenxin, Pan, Yongjuan |
| Informácie o vydavateľovi: |
Zhejiang University Press, Hangzhou |
| Predmety: |
\(\alpha\)-Bloch functions, M-invariant gradient, Bloch functions, normal functions of several complex variables |
| Popis: |
Summary: Invariant gradient characterizations of \(\alpha\)-Bloch functions in the unit ball of \(\mathbb{C}^n\) are studied and it is proved that for \(f\in H(B)\), \(f\in{\mathcal B}^a\) if and only if \[ \sup_{a\in B} {1\over v(E(a,r))} \int_{E(a,r)} |\widetilde\nabla f(z)|^p(1-|z|^2)^{p(\alpha- 1)} dv(z)< \infty; \] or \[ \sup_{a\in B} \int_B(1-|z|^2)^{p(\alpha- 1)} |\widetilde\nabla f(z)|^p(1- |\varphi_a(z)|^2)^{nq} d\lambda(z) |
| Druh dokumentu: |
Article |
| Popis súboru: |
application/xml |
| Prístupová URL adresa: |
https://zbmath.org/1895014 |
| Prístupové číslo: |
edsair.c2b0b933574d..26ee4b2bd60f13fa21556697a1c57afc |
| Databáza: |
OpenAIRE |