Möbius invariant gradient and \(\alpha\)-Bloch functions
Uloženo v:
| Název: | Möbius invariant gradient and \(\alpha\)-Bloch functions |
|---|---|
| Autoři: | Zhuo, Wenxin, Pan, Yongjuan |
| Informace o vydavateli: | Zhejiang University Press, Hangzhou |
| Témata: | \(\alpha\)-Bloch functions, M-invariant gradient, Bloch functions, normal functions of several complex variables |
| Popis: | Summary: Invariant gradient characterizations of \(\alpha\)-Bloch functions in the unit ball of \(\mathbb{C}^n\) are studied and it is proved that for \(f\in H(B)\), \(f\in{\mathcal B}^a\) if and only if \[ \sup_{a\in B} {1\over v(E(a,r))} \int_{E(a,r)} |\widetilde\nabla f(z)|^p(1-|z|^2)^{p(\alpha- 1)} dv(z)< \infty; \] or \[ \sup_{a\in B} \int_B(1-|z|^2)^{p(\alpha- 1)} |\widetilde\nabla f(z)|^p(1- |\varphi_a(z)|^2)^{nq} d\lambda(z) |
| Druh dokumentu: | Article |
| Popis souboru: | application/xml |
| Přístupová URL adresa: | https://zbmath.org/1895014 |
| Přístupové číslo: | edsair.c2b0b933574d..26ee4b2bd60f13fa21556697a1c57afc |
| Databáze: | OpenAIRE |
Buďte první, kdo okomentuje tento záznam!
Nájsť tento článok vo Web of Science