The pointwise multipliers of Bloch type space \(\beta^{p}\) and Dirichlet type space \(D_{q}\) on the unit ball of \(\mathbb{C}^{n}\).

Uloženo v:
Podrobná bibliografie
Název: The pointwise multipliers of Bloch type space \(\beta^{p}\) and Dirichlet type space \(D_{q}\) on the unit ball of \(\mathbb{C}^{n}\).
Autoři: Zhang, Xuejun
Informace o vydavateli: Elsevier, San Diego, CA
Témata: Dirichlet type space, Bloch type space, pointwise multiplier, Bloch functions, normal functions of several complex variables, unit ball
Popis: Let \(X\), \(Y\) be two spaces of holomorphic functions on the unit ball \(B\) of \(\mathbb{C}^n\). We call \(\varphi\) a pointwise multipliers from \(X\) to \(Y\) if \(\varphi f\in Y \) for all \(f\in X\). The collection of all pointwise multipliers from \(X\) to \(Y\) is denoted by \(M(X, Y)\). Let \(f\in H(B)\), the class of all functions holomorphic on \(B\). For \(p\geq 0\), \(f\) is said to be in the Bloch type spaces \(\beta^p\) provided that \( \sup_{z\in B} (1-| z| ^2)^p | Rf(z)| < \infty,\) where \(Rf(z)= \sum_{j=1}^n z_j \frac{\partial f(z)}{\partial z_j}. \) For \(p\in (-\infty, \infty)\), \(f\) is said to be in the Dirichlet type spaces \(D_p\) if and only if \[ \sum_{| \alpha| \geq 0} (n+| \alpha| )^p | b_\alpha| ^2 \omega_\alpha n;\\ q\geq \max\{0, (n+2-p)/2\}, \end{cases} \) except \( \begin{cases} p=n+2;\\ q=0; \end{cases} \) (3) \(M(D_p, \beta^q) = \beta^{q-(n-p)/2}\) for \(n+2-2q1\), \(M(D_n, \beta^q) = I_q = \{\varphi\in H(B): \sup_{z\in B} (1-| z| ^2)^q (\text{log}\frac{1}{1-| z| ^2} )^{1/2} | R\varphi(z)
Druh dokumentu: Article
Popis souboru: application/xml
DOI: 10.1016/s0022-247x(03)00404-9
Přístupová URL adresa: https://zbmath.org/1992552
Přístupové číslo: edsair.c2b0b933574d..251fb0b81484c852f721e90bc97032fa
Databáze: OpenAIRE
Popis
Abstrakt:Let \(X\), \(Y\) be two spaces of holomorphic functions on the unit ball \(B\) of \(\mathbb{C}^n\). We call \(\varphi\) a pointwise multipliers from \(X\) to \(Y\) if \(\varphi f\in Y \) for all \(f\in X\). The collection of all pointwise multipliers from \(X\) to \(Y\) is denoted by \(M(X, Y)\). Let \(f\in H(B)\), the class of all functions holomorphic on \(B\). For \(p\geq 0\), \(f\) is said to be in the Bloch type spaces \(\beta^p\) provided that \( \sup_{z\in B} (1-| z| ^2)^p | Rf(z)| < \infty,\) where \(Rf(z)= \sum_{j=1}^n z_j \frac{\partial f(z)}{\partial z_j}. \) For \(p\in (-\infty, \infty)\), \(f\) is said to be in the Dirichlet type spaces \(D_p\) if and only if \[ \sum_{| \alpha| \geq 0} (n+| \alpha| )^p | b_\alpha| ^2 \omega_\alpha n;\\ q\geq \max\{0, (n+2-p)/2\}, \end{cases} \) except \( \begin{cases} p=n+2;\\ q=0; \end{cases} \) (3) \(M(D_p, \beta^q) = \beta^{q-(n-p)/2}\) for \(n+2-2q1\), \(M(D_n, \beta^q) = I_q = \{\varphi\in H(B): \sup_{z\in B} (1-| z| ^2)^q (\text{log}\frac{1}{1-| z| ^2} )^{1/2} | R\varphi(z)
DOI:10.1016/s0022-247x(03)00404-9