Podrobná bibliografia
| Názov: |
Convergence dans \(L^ p(R^{n+1})\) de la solution de l'équation de Klein-Gordon vers celle de l'équation des ondes. \((L^ p(R^{n+1})\)- convergence of the solution of the Klein-Gordon equation to the solution of the wave equation) |
| Autori: |
Bachelot, Alain |
| Informácie o vydavateľovi: |
Université Paul Sabatier, Faculté des Sciences, Toulouse |
| Predmety: |
convergence, Partial differential equations of mathematical physics and other areas of application, continuity of the solution, Klein-Gordon equation, wave equation, inverse scattering problem, Dependence of solutions to PDEs on initial and/or boundary data and/or on parameters of PDEs, Theoretical approximation in context of PDEs, Second-order nonlinear hyperbolic equations |
| Popis: |
We study the continuity of the solution of the Klein-Gordon equation with respect to the mass. We prove the convergence in \(L^ q(R_ t\times R^ n_ x)\) of the solution of the inhomogeneous Klein-Gordon equation to the solution of the wave equation, with same initial data, when the mass tends to 0; we use this result to solve the inverse scattering problem for the equation \[ \square u+m^ 2u=\sum_{k\geq 1}q_ k(x)| u|^{2k}u. \] |
| Druh dokumentu: |
Article |
| Popis súboru: |
application/xml |
| DOI: |
10.5802/afst.629 |
| Prístupová URL adresa: |
https://zbmath.org/4052152 |
| Prístupové číslo: |
edsair.c2b0b933574d..1750280e61b7654440a9b8e05c42c3d7 |
| Databáza: |
OpenAIRE |