Analyzing and Improving the Image Quality of StyleGAN 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

Gespeichert in:
Bibliographische Detailangaben
Titel: Analyzing and Improving the Image Quality of StyleGAN 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
Autoren: Karras, T., Laine, Samuli, Aittala, M., Hellsten, J., Lehtinen, J., Aila
Quelle: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. :8107-8116
Verlagsinformationen: 2020.
Publikationsjahr: 2020
Schlagwörter: ta113, Modulation, Measurement, Standards, unconditional image modeling, data visualisation, generator normalization, style-based GAN architecture, data-driven unconditional generative image modeling, distribution quality metrics, unsupervised learning, Convolution, Generators, StyleGAN architecture, perceived image quality, Image resolution, Training, neural net architecture, image coding, image resolution
Publikationsart: Conference object
Sprache: English
ISSN: 1063-6919
DOI: 10.1109/cvpr42600.2020.00813
Zugangs-URL: http://juuli.fi/Record/0371030520
Dokumentencode: edsair.CSC...........3749ed8e55b44f3ac890d3d58a3cd027
Datenbank: OpenAIRE
Beschreibung
ISSN:10636919
DOI:10.1109/cvpr42600.2020.00813