Hybrid Ensemble Learning Sistem Keamanan Jaringan Untuk Meningkatkan Performa Deteksi Anomali

Gespeichert in:
Bibliographische Detailangaben
Titel: Hybrid Ensemble Learning Sistem Keamanan Jaringan Untuk Meningkatkan Performa Deteksi Anomali
Autoren: Irawan, Rony Heri, Irawan, Rony Heri Irawan, Nico Adi Saputra, Umi Mahdiyah
Quelle: Nusantara of Engineering (NOE); Vol. 8 No. 02 (2025): Volume 8 Nomor 2-2025; 361 – 369
Nusantara of Engineering (NOE); Vol 8 No 02 (2025): Volume 8 Nomor 2-2025; 361 – 369
Verlagsinformationen: Universitas Nusantara PGRI Kediri, 2025.
Publikationsjahr: 2025
Schlagwörter: Deteksi Anomali, Hybrid Ensemble, Keamanan Siber, Serangan Siber, Network Intrusion Detection Sistem, Anomaly Detection, Cyber Attack, Cyber Security, Hybrid Ensemble, Network Intrusion Detection System
Beschreibung: Serangan siber seperti zero-day attacks dan APT menjadi tantangan serius bagi sistem deteksi intrusi jaringan, terutama yang masih mengandalkan metode berbasis tanda tangan. Penelitian ini bertujuan merancang sistem deteksi anomali jaringan berbasis hybrid ensemble learning dengan menggabungkan algoritma Isolation Forest, K-Means, dan Random Forest menggunakan metode majority voting. Proses penelitian meliputi preprocessing data, pelatihan dan evaluasi model menggunakan dataset publik CSE-CIC-IDS2018. Evaluasi dilakukan dengan metrik akurasi, precision, recall, F1-score, dan AUC. Hasil menunjukkan bahwa pendekatan hybrid ini meningkatkan akurasi deteksi hingga 99,9% dan menurunkan false positive secara signifikan dibanding pendekatan tunggal. Sistem yang diusulkan terbukti lebih adaptif dan efisien dalam mengidentifikasi berbagai pola serangan siber, serta memberikan kontribusi terhadap pengembangan teknologi keamanan jaringan yang lebih andal.
Cyber ​​attacks such as zero-day attacks and APTs are serious challenges for network intrusion detection systems, especially those that still rely on signature-based methods. This study aims to design a hybrid ensemble learning-based network anomaly detection system by combining the Isolation Forest, K-Means, and Random Forest algorithms using the majority voting method. The research process includes data preprocessing, training, and model evaluation using the CSE-CIC-IDS2018 public dataset. Evaluation is carried out using accuracy, precision, recall, F1-score, and AUC metrics. The results show that this hybrid approach improves detection accuracy by up to 99.9% and significantly reduces false positives compared to a single approach. The proposed system is proven to be more adaptive and efficient in identifying various cyber attack patterns, as well as contributing to the development of more reliable network security technology.
Publikationsart: Article
Dateibeschreibung: application/pdf
Sprache: English
ISSN: 2355-6684
2776-6640
DOI: 10.29407/noe.v8i02.25617
Zugangs-URL: https://ojs.unpkediri.ac.id/index.php/noe/article/view/25617
Rights: CC BY SA
Dokumentencode: edsair.9e0ed7a5532b..889a7626a891d23c3d17fb8c1f18cb20
Datenbank: OpenAIRE
Beschreibung
Abstract:Serangan siber seperti zero-day attacks dan APT menjadi tantangan serius bagi sistem deteksi intrusi jaringan, terutama yang masih mengandalkan metode berbasis tanda tangan. Penelitian ini bertujuan merancang sistem deteksi anomali jaringan berbasis hybrid ensemble learning dengan menggabungkan algoritma Isolation Forest, K-Means, dan Random Forest menggunakan metode majority voting. Proses penelitian meliputi preprocessing data, pelatihan dan evaluasi model menggunakan dataset publik CSE-CIC-IDS2018. Evaluasi dilakukan dengan metrik akurasi, precision, recall, F1-score, dan AUC. Hasil menunjukkan bahwa pendekatan hybrid ini meningkatkan akurasi deteksi hingga 99,9% dan menurunkan false positive secara signifikan dibanding pendekatan tunggal. Sistem yang diusulkan terbukti lebih adaptif dan efisien dalam mengidentifikasi berbagai pola serangan siber, serta memberikan kontribusi terhadap pengembangan teknologi keamanan jaringan yang lebih andal.<br />Cyber ​​attacks such as zero-day attacks and APTs are serious challenges for network intrusion detection systems, especially those that still rely on signature-based methods. This study aims to design a hybrid ensemble learning-based network anomaly detection system by combining the Isolation Forest, K-Means, and Random Forest algorithms using the majority voting method. The research process includes data preprocessing, training, and model evaluation using the CSE-CIC-IDS2018 public dataset. Evaluation is carried out using accuracy, precision, recall, F1-score, and AUC metrics. The results show that this hybrid approach improves detection accuracy by up to 99.9% and significantly reduces false positives compared to a single approach. The proposed system is proven to be more adaptive and efficient in identifying various cyber attack patterns, as well as contributing to the development of more reliable network security technology.
ISSN:23556684
27766640
DOI:10.29407/noe.v8i02.25617