Podrobná bibliografie
| Název: |
AI-Guided Inference of Morphodynamic Attractor-like States in Glioblastoma. |
| Autoři: |
Volovăț, Simona Ruxandra, Panaite, Diana Ioana, Ostafe, Mădălina Raluca, Buzea, Călin Gheorghe, Iancu, Dragoș Teodor, Agop, Maricel, Ochiuz, Lăcrămioara, Rusu, Dragoș Ioan, Volovăț, Cristian Constantin |
| Zdroj: |
Diagnostics (2075-4418); Jan2026, Vol. 16 Issue 1, p139, 33p |
| Témata: |
GLIOBLASTOMA multiforme, ARTIFICIAL intelligence, MAGNETIC resonance imaging, SURVIVAL analysis (Biometry), DEEP learning, ATTRACTORS (Mathematics), DYNAMICAL systems, MORPHOLOGY |
| Abstrakt: |
Background/Objectives: Glioblastoma (GBM) exhibits heterogeneous, nonlinear invasion patterns that challenge conventional modeling and radiomic prediction. Most deep learning approaches describe the morphology but rarely capture the dynamical stability of tumor evolution. We propose an AI framework that approximates a latent attractor landscape of GBM morphodynamics—stable basins in a continuous manifold that are consistent with reproducible morphologic regimes. Methods: Multimodal MRI scans from BraTS 2020 (n = 494) were standardized and embedded with a 3D autoencoder to obtain 128-D latent representations. Unsupervised clustering identified latent basins ("attractors"). A neural ordinary differential equation (neural-ODE) approximated latent dynamics. All dynamics were inferred from cross-sectional population variability rather than longitudinal follow-up, serving as a proof-of-concept approximation of morphologic continuity. Voxel-level perturbation quantified local morphodynamic sensitivity, and proof-of-concept control was explored by adding small inputs to the neural-ODE using both a deterministic controller and a reinforcement learning agent based on soft actor–critic (SAC). Survival analyses (Kaplan–Meier, log-rank, ridge-regularized Cox) assessed associations with outcomes. Results: The learned latent manifold was smooth and clinically organized. Three dominant attractor basins were identified with significant survival stratification (χ2 = 31.8, p = 1.3 × 10−7) in the static model. Dynamic attractor basins derived from neural-ODE endpoints showed modest and non-significant survival differences, confirming that these dynamic labels primarily encode the morphodynamic structure rather than fixed prognostic strata. Dynamic basins inferred from neural-ODE flows were not independently prognostic, indicating that the inferred morphodynamic field captures geometric organization rather than additional clinical risk information. The latent stability index showed a weak but borderline significant negative association with survival (ρ = −0.13 [−0.26, −0.01]; p = 0.0499). In multivariable Cox models, age remained the dominant covariate (HR = 1.30 [1.16–1.45]; p = 5 × 10−6), with overall C-indices of 0.61–0.64. Voxel-level sensitivity maps highlighted enhancing rims and peri-necrotic interfaces as influential regions. In simulation, deterministic control redirected trajectories toward lower-risk basins (≈57% success; ≈96% terminal distance reduction), while a soft actor–critic (SAC) agent produced smoother trajectories and modest additional reductions in terminal distance, albeit without matching the deterministic controller's success rate. The learned attractor classes were internally consistent and clinically distinct. Conclusions: Learning a latent attractor landscape links generative AI, dynamical systems theory, and clinical outcomes in GBM. Although limited by the cross-sectional nature of BraTS and modest prognostic gains beyond age, these results provide a mechanistic, controllable framework for tumor morphology in which inferred dynamic attractor-like flows describe latent organization rather than a clinically predictive temporal model, motivating prospective radiogenomic validation and adaptive therapy studies. [ABSTRACT FROM AUTHOR] |
|
Copyright of Diagnostics (2075-4418) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Databáze: |
Biomedical Index |