Deep Learning-Based Automatic Muscle Segmentation of the Thigh Using Lower Extremity CT Images.

Uložené v:
Podrobná bibliografia
Názov: Deep Learning-Based Automatic Muscle Segmentation of the Thigh Using Lower Extremity CT Images.
Autori: Kim, Young Jae, Kim, Ji-Eun, Park, Yeonho, Chai, Jae Won, Kim, Kwang Gi, Choi, Ja-Young
Zdroj: Diagnostics (2075-4418); Nov2025, Vol. 17 Issue 22, p2823, 17p
Predmety: DEEP learning, COMPUTED tomography, CONVOLUTIONAL neural networks, THIGH, SARCOPENIA, EMPIRICAL research
Abstrakt: Background/Objectives: Sarcopenia and muscle composition have emerged as significant indicators in the fields of musculoskeletal and metabolic research. The objective of this study was to develop and validate a fully automated, deep learning-based method for segmenting thigh muscles into three functional groups (extensor, flexor, and adductor) using non-contrast computed tomography (CT) images and to quantitatively evaluate the thigh muscles. Methods: In order to ascertain the most efficacious architecture for automated thigh muscle segmentation, three deep learning models (Dense U-Net, MANet, and SegFormer) were implemented and subsequently compared. Each model was trained using 136 manually labeled non-contrast thigh CT scans and externally validated with 40 scans from another institution. The performance of the segmentation was evaluated using the Dice similarity coefficient (DSC), sensitivity, specificity, and accuracy. Quantitative indices, including total muscle volume, lean muscle volume, and intra-/intermuscular fat volumes, were automatically calculated and compared with manual measurements. Results: All three models exhibited high segmentation accuracy, with the mean DSC exceeding 96%. The MANet model demonstrated optimal performance in internal validation, while the SegFormer model exhibited superior volumetric agreement in external validation, as indicated by an intraclass correlation coefficient (ICC) of at least 0.995 and a p-value less than 0.01. Conclusions: A CT-based deep learning framework enables accurate and reproducible segmentation of functional thigh muscle groups. A comparative evaluation of convolutional attention- and transformer-based architectures supports the feasibility of CT-based quantitative muscle assessment for sarcopenia and musculoskeletal research. [ABSTRACT FROM AUTHOR]
Copyright of Diagnostics (2075-4418) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáza: Biomedical Index
Popis
Abstrakt:Background/Objectives: Sarcopenia and muscle composition have emerged as significant indicators in the fields of musculoskeletal and metabolic research. The objective of this study was to develop and validate a fully automated, deep learning-based method for segmenting thigh muscles into three functional groups (extensor, flexor, and adductor) using non-contrast computed tomography (CT) images and to quantitatively evaluate the thigh muscles. Methods: In order to ascertain the most efficacious architecture for automated thigh muscle segmentation, three deep learning models (Dense U-Net, MANet, and SegFormer) were implemented and subsequently compared. Each model was trained using 136 manually labeled non-contrast thigh CT scans and externally validated with 40 scans from another institution. The performance of the segmentation was evaluated using the Dice similarity coefficient (DSC), sensitivity, specificity, and accuracy. Quantitative indices, including total muscle volume, lean muscle volume, and intra-/intermuscular fat volumes, were automatically calculated and compared with manual measurements. Results: All three models exhibited high segmentation accuracy, with the mean DSC exceeding 96%. The MANet model demonstrated optimal performance in internal validation, while the SegFormer model exhibited superior volumetric agreement in external validation, as indicated by an intraclass correlation coefficient (ICC) of at least 0.995 and a p-value less than 0.01. Conclusions: A CT-based deep learning framework enables accurate and reproducible segmentation of functional thigh muscle groups. A comparative evaluation of convolutional attention- and transformer-based architectures supports the feasibility of CT-based quantitative muscle assessment for sarcopenia and musculoskeletal research. [ABSTRACT FROM AUTHOR]
ISSN:20754418
DOI:10.3390/diagnostics15222823