DCBAN: A Dynamic Confidence Bayesian Adaptive Network for Reconstructing Visual Images from fMRI Signals.

Saved in:
Bibliographic Details
Title: DCBAN: A Dynamic Confidence Bayesian Adaptive Network for Reconstructing Visual Images from fMRI Signals.
Authors: Wang, Wenju, Cai, Yuyang, Zhang, Renwei, Li, Jiaqi, Ye, Zinuo, Wang, Zhen
Source: Brain Sciences (2076-3425); Nov2025, Vol. 15 Issue 11, p1166, 31p
Subject Terms: FUNCTIONAL magnetic resonance imaging, IMAGE reconstruction, IMAGE quality in imaging systems, SINGULAR value decomposition, GENERALIZATION, BAYESIAN analysis, DEEP learning
Abstract: Background: Current fMRI (functional magnetic resonance imaging)-driven brain information decoding for visual image reconstruction techniques faces issues such as poor structural fidelity, inadequate model generalization, and unnatural visual image reconstruction in complex scenarios. Methods: To address these challenges, this study proposes a Dynamic Confidence Bayesian Adaptive Network (DCBAN). In this network model, deep nested Singular Value Decomposition is introduced to embed low-rank constraints into the deep learning model layers for fine-grained feature extraction, thus improving structural fidelity. The proposed Bayesian Adaptive Fractional Ridge Regression module, based on singular value space, dynamically adjusts the regularization parameters, significantly enhancing the decoder's generalization ability under complex stimulus conditions. The constructed Dynamic Confidence Adaptive Diffusion Model module incorporates a confidence network and time decay strategy, dynamically adjusting the semantic injection strength during the generation phase, further enhancing the details and naturalness of the generated images. Results: The proposed DCBAN method is applied to the NSD, outperforming state-of-the-art methods by 8.41%, 0.6%, and 4.8% in PixCorr (0.361), Incep (96.0%), and CLIP (97.8%), respectively, achieving the current best performance in both structural and semantic fMRI visual image reconstruction. Conclusions: The DCBAN proposed in this thesis offers a novel solution for reconstructing visual images from fMRI signals, significantly enhancing the robustness and generative quality of the reconstructed images. [ABSTRACT FROM AUTHOR]
Copyright of Brain Sciences (2076-3425) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Biomedical Index
Description
Abstract:Background: Current fMRI (functional magnetic resonance imaging)-driven brain information decoding for visual image reconstruction techniques faces issues such as poor structural fidelity, inadequate model generalization, and unnatural visual image reconstruction in complex scenarios. Methods: To address these challenges, this study proposes a Dynamic Confidence Bayesian Adaptive Network (DCBAN). In this network model, deep nested Singular Value Decomposition is introduced to embed low-rank constraints into the deep learning model layers for fine-grained feature extraction, thus improving structural fidelity. The proposed Bayesian Adaptive Fractional Ridge Regression module, based on singular value space, dynamically adjusts the regularization parameters, significantly enhancing the decoder's generalization ability under complex stimulus conditions. The constructed Dynamic Confidence Adaptive Diffusion Model module incorporates a confidence network and time decay strategy, dynamically adjusting the semantic injection strength during the generation phase, further enhancing the details and naturalness of the generated images. Results: The proposed DCBAN method is applied to the NSD, outperforming state-of-the-art methods by 8.41%, 0.6%, and 4.8% in PixCorr (0.361), Incep (96.0%), and CLIP (97.8%), respectively, achieving the current best performance in both structural and semantic fMRI visual image reconstruction. Conclusions: The DCBAN proposed in this thesis offers a novel solution for reconstructing visual images from fMRI signals, significantly enhancing the robustness and generative quality of the reconstructed images. [ABSTRACT FROM AUTHOR]
ISSN:20763425
DOI:10.3390/brainsci15111166