Mesoporous Silicas of Well-Organized Structure: Synthesis, Characterization, and Investigation of Physical Processes Occurring in Confined Pore Spaces.

Gespeichert in:
Bibliographische Detailangaben
Titel: Mesoporous Silicas of Well-Organized Structure: Synthesis, Characterization, and Investigation of Physical Processes Occurring in Confined Pore Spaces.
Autoren: Blachnio, Magdalena, Zienkiewicz-Strzalka, Malgorzata, Derylo-Marczewska, Anna
Quelle: International Journal of Molecular Sciences; Sep2025, Vol. 26 Issue 18, p9255, 27p
Schlagwörter: MESOPOROUS silica, BLOCK copolymers, THERMAL properties, PHASE transitions, ADSORPTION capacity, MATERIALS testing, POROSITY, CHEMICAL synthesis
Abstract: Mesoporous silica materials with well-organized architectures were synthesized using a series of Pluronic PE-type triblock copolymers (PE6800, PE9200, PE9400, PE10500) as structure-directing agents under acidic conditions. The study aimed to elucidate the impact of synthesis parameters—copolymer type, presence of a swelling agent, 1,3,5-trimethylbenzene, aging temperature, and silica precursor—on the structural, textural, and functional properties of the resulting mesocellular foam materials. Characterization by Nitrogen Adsorption/Desorption, Transmission Electron Microscopy, X-ray Diffraction, and Small-angle X-ray Scattering revealed that structural ordering and pore morphology are significantly influenced by the EO/PO ratio of the copolymers and the use of the expander. Materials synthesized with PE9400 and PE10500 in the presence of a swelling agent exhibited highly uniform bottle-shaped mesopores with increased surface area and pore volume. Thermal behavior studied via Differential Scanning Calorimetry indicated a correlation between pore size and melting point depression of confined water, consistent with the Gibbs–Thomson effect. Adsorption capacity and kinetics for methylene blue varied significantly with pore structure, with materials possessing narrow mesopores showing superior dye uptake, and materials with larger mesopores and open-pore architecture exhibiting faster adsorption rates. This work demonstrates the tunability of mesoporous silica structure through precise control of synthesis conditions and highlights its potential in applications involving adsorption and phase phenomena in confined pore systems. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Molecular Sciences is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Biomedical Index
Beschreibung
Abstract:Mesoporous silica materials with well-organized architectures were synthesized using a series of Pluronic PE-type triblock copolymers (PE6800, PE9200, PE9400, PE10500) as structure-directing agents under acidic conditions. The study aimed to elucidate the impact of synthesis parameters—copolymer type, presence of a swelling agent, 1,3,5-trimethylbenzene, aging temperature, and silica precursor—on the structural, textural, and functional properties of the resulting mesocellular foam materials. Characterization by Nitrogen Adsorption/Desorption, Transmission Electron Microscopy, X-ray Diffraction, and Small-angle X-ray Scattering revealed that structural ordering and pore morphology are significantly influenced by the EO/PO ratio of the copolymers and the use of the expander. Materials synthesized with PE9400 and PE10500 in the presence of a swelling agent exhibited highly uniform bottle-shaped mesopores with increased surface area and pore volume. Thermal behavior studied via Differential Scanning Calorimetry indicated a correlation between pore size and melting point depression of confined water, consistent with the Gibbs–Thomson effect. Adsorption capacity and kinetics for methylene blue varied significantly with pore structure, with materials possessing narrow mesopores showing superior dye uptake, and materials with larger mesopores and open-pore architecture exhibiting faster adsorption rates. This work demonstrates the tunability of mesoporous silica structure through precise control of synthesis conditions and highlights its potential in applications involving adsorption and phase phenomena in confined pore systems. [ABSTRACT FROM AUTHOR]
ISSN:16616596
DOI:10.3390/ijms26189255