Modelling a Lab-Scale Continuous Flow Aerobic Granular Sludge Reactor: Optimisation Pathways for Scale-Up.

Saved in:
Bibliographic Details
Title: Modelling a Lab-Scale Continuous Flow Aerobic Granular Sludge Reactor: Optimisation Pathways for Scale-Up.
Authors: Siney, Melissa, Salehi, Reza, Hassan, Mohamed G., Hamza, Rania, Shigidi, Ihab M. T. A.
Source: Water (20734441); Jul2025, Vol. 17 Issue 14, p2131, 37p
Subject Terms: CONTINUOUS flow reactors, MATHEMATICAL models, COMPUTATIONAL fluid dynamics, WASTEWATER treatment, SENSITIVITY analysis, CHEMICAL oxygen demand, CHEMICAL reactors
Abstract: Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, lowering the land footprint and improving efficiency. This research investigates the optimisation of a lab-scale sequencing batch reactor (SBR) into a continuous flow reactor through mathematical modelling, sensitivity analysis, and a computational fluid dynamic model. This is all applied for the future goal of scaling up the model designed to a full-scale continuous flow reactor. The mathematical model developed analyses microbial kinetics, COD degradation, and mixing flows using Reynolds and Froude numbers. To perform a sensitivity analysis, a Python code was developed to investigate the stability when influent concentrations and flow rates vary. Finally, CFD simulations on ANSYS Fluent evaluated the mixing within the reactor. An 82% COD removal efficiency was derived from the model and validated against the SBR data and other configurations. The sensitivity analysis highlighted the reactor's inefficiency in handling high-concentration influents and fast flow rates. CFD simulations revealed good mixing within the reactor; however, they did show issues where biomass washout would be highly likely if applied in continuous flow operation. All of these results were taken under deep consideration to provide a new reactor configuration to be studied that may resolve all these downfalls. [ABSTRACT FROM AUTHOR]
Copyright of Water (20734441) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Biomedical Index
Description
Abstract:Wastewater treatment plants (WWTPs) face increasing pressure to handle higher volumes of water due to climate change causing storm surges, which current infrastructure cannot handle. Aerobic granular sludge (AGS) is a promising alternative to activated sludge systems due to their improved settleability property, lowering the land footprint and improving efficiency. This research investigates the optimisation of a lab-scale sequencing batch reactor (SBR) into a continuous flow reactor through mathematical modelling, sensitivity analysis, and a computational fluid dynamic model. This is all applied for the future goal of scaling up the model designed to a full-scale continuous flow reactor. The mathematical model developed analyses microbial kinetics, COD degradation, and mixing flows using Reynolds and Froude numbers. To perform a sensitivity analysis, a Python code was developed to investigate the stability when influent concentrations and flow rates vary. Finally, CFD simulations on ANSYS Fluent evaluated the mixing within the reactor. An 82% COD removal efficiency was derived from the model and validated against the SBR data and other configurations. The sensitivity analysis highlighted the reactor's inefficiency in handling high-concentration influents and fast flow rates. CFD simulations revealed good mixing within the reactor; however, they did show issues where biomass washout would be highly likely if applied in continuous flow operation. All of these results were taken under deep consideration to provide a new reactor configuration to be studied that may resolve all these downfalls. [ABSTRACT FROM AUTHOR]
ISSN:20734441
DOI:10.3390/w17142131