Haplotype-Phased Chromosome-Level Genome Assembly of Cryptoporus qinlingensis , a Typical Traditional Chinese Medicine Fungus.

Saved in:
Bibliographic Details
Title: Haplotype-Phased Chromosome-Level Genome Assembly of Cryptoporus qinlingensis , a Typical Traditional Chinese Medicine Fungus.
Authors: Song, Yu, Zhang, Ming, Liu, Yu-Ying, Li, Minglei, Xie, Xiuchao, Qi, Jianzhao
Source: Journal of Fungi; Feb2025, Vol. 11 Issue 2, p163, 19p
Subject Terms: GENOMICS, CHINESE medicine, METABOLITES, GENE clusters, TRADITIONAL medicine
Abstract: This study presents the first comprehensive genomic analysis of Cryptoporus qinlingensis, a classical folk medicine and newly identified macrofungus from the Qinling Mountains. Utilizing advanced sequencing technologies, including PacBio HiFi and Hi-C, we achieved a high-quality chromosome-level genome assembly. The genome, sized at 39.1 Mb, exhibits a heterozygosity of 0.21% and contains 21.2% repetitive sequences. Phylogenetic analysis revealed a recent divergence of C. qinlingensis from Dichomitus squalens approximately 212.26 million years ago (MYA), highlighting the rapid diversification within the Polyporaceae family. Comparative genomic studies indicate significant gene family contraction in C. qinlingensis, suggesting evolutionary adaptations. The identification of a tetrapolar mating system, along with the analysis of CAZymes and P450 genes, underscores the genomic complexity and ecological adaptability of this species. Furthermore, the discovery of 30 biosynthetic gene clusters (BGCs) related to secondary metabolites, including polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), and terpene synthesis enzymes, opens new avenues for exploring bioactive compounds with potential medicinal applications. This research not only enriches our understanding of the Cryptoporus genus but also provides a valuable foundation for future studies aiming to harness the therapeutic potential of C. qinlingensis and to further explore its ecological and evolutionary significance. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Fungi is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Biomedical Index
Description
Abstract:This study presents the first comprehensive genomic analysis of Cryptoporus qinlingensis, a classical folk medicine and newly identified macrofungus from the Qinling Mountains. Utilizing advanced sequencing technologies, including PacBio HiFi and Hi-C, we achieved a high-quality chromosome-level genome assembly. The genome, sized at 39.1 Mb, exhibits a heterozygosity of 0.21% and contains 21.2% repetitive sequences. Phylogenetic analysis revealed a recent divergence of C. qinlingensis from Dichomitus squalens approximately 212.26 million years ago (MYA), highlighting the rapid diversification within the Polyporaceae family. Comparative genomic studies indicate significant gene family contraction in C. qinlingensis, suggesting evolutionary adaptations. The identification of a tetrapolar mating system, along with the analysis of CAZymes and P450 genes, underscores the genomic complexity and ecological adaptability of this species. Furthermore, the discovery of 30 biosynthetic gene clusters (BGCs) related to secondary metabolites, including polyketide synthase (PKS), non-ribosomal peptide synthetase (NRPS), and terpene synthesis enzymes, opens new avenues for exploring bioactive compounds with potential medicinal applications. This research not only enriches our understanding of the Cryptoporus genus but also provides a valuable foundation for future studies aiming to harness the therapeutic potential of C. qinlingensis and to further explore its ecological and evolutionary significance. [ABSTRACT FROM AUTHOR]
ISSN:2309608X
DOI:10.3390/jof11020163