Microstructural Study of Containerless Solidification of Al–20wt%Ce Alloy.

Gespeichert in:
Bibliographische Detailangaben
Titel: Microstructural Study of Containerless Solidification of Al–20wt%Ce Alloy.
Autoren: Valloton, Jonas, Bogno, Abdoul‐Aziz, Vogel, Sven C., Sahoo, Akankshya, Henein, Hani
Quelle: Advanced Engineering Materials; Nov2024, Vol. 26 Issue 22, p1-9, 9p
Schlagwörter: MICROHARDNESS testing, EUTECTICS, NEUTRON diffraction, SOLIDIFICATION, LEVITATION
Abstract: Containerless solidification of Al–20wt%Ce is investigated experimentally using the electromagnetic levitation (EML) and impulse atomization (IA) techniques. In the processed EML samples, small primary undercooling and minimal eutectic undercooling are shown. The microstructure consists of large primary Al11Ce3 dendrites surrounded by an α‐Al–Al11Ce3 eutectic. Phase fractions determined by neutron diffraction are similar to the values obtained from a Scheil–Gulliver solidification simulation. Larger IA powders (between 425 and 1000 μm) show a microstructure qualitatively similar to that of EML samples, implying that they follow a similar solidification path. Quantitatively, microstructural features are finer due to the higher cooling rates involved in the solidification process. Atomized particles with a size lower than 425 μm show a strikingly different microstructure, with a very fine eutectic giving way to large intermetallic plates surround by a regular eutectic. Microhardness testing of the structures shows a significant increase in hardness as the sample size decreases, going from 45.8 ± 3.6 HV for the EML sample (lowest cooling rate) to 142.2 ± 12.0 HV for particles in the 106–150 μm range (highest cooling rate). [ABSTRACT FROM AUTHOR]
Copyright of Advanced Engineering Materials is the property of Wiley-Blackwell and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Biomedical Index
Beschreibung
Abstract:Containerless solidification of Al–20wt%Ce is investigated experimentally using the electromagnetic levitation (EML) and impulse atomization (IA) techniques. In the processed EML samples, small primary undercooling and minimal eutectic undercooling are shown. The microstructure consists of large primary Al11Ce3 dendrites surrounded by an α‐Al–Al11Ce3 eutectic. Phase fractions determined by neutron diffraction are similar to the values obtained from a Scheil–Gulliver solidification simulation. Larger IA powders (between 425 and 1000 μm) show a microstructure qualitatively similar to that of EML samples, implying that they follow a similar solidification path. Quantitatively, microstructural features are finer due to the higher cooling rates involved in the solidification process. Atomized particles with a size lower than 425 μm show a strikingly different microstructure, with a very fine eutectic giving way to large intermetallic plates surround by a regular eutectic. Microhardness testing of the structures shows a significant increase in hardness as the sample size decreases, going from 45.8 ± 3.6 HV for the EML sample (lowest cooling rate) to 142.2 ± 12.0 HV for particles in the 106–150 μm range (highest cooling rate). [ABSTRACT FROM AUTHOR]
ISSN:14381656
DOI:10.1002/adem.202401634