A Computer Program for Assessing Histoanatomical Morphometrics in Ultra-High-Frequency Ultrasound Images of the Bowel Wall in Children: Development and Inter-Observer Variability.

Uloženo v:
Podrobná bibliografie
Název: A Computer Program for Assessing Histoanatomical Morphometrics in Ultra-High-Frequency Ultrasound Images of the Bowel Wall in Children: Development and Inter-Observer Variability.
Autoři: Erlöv, Tobias, Hawez, Tebin, Granéli, Christina, Evertsson, Maria, Jansson, Tomas, Stenström, Pernilla, Cinthio, Magnus
Zdroj: Diagnostics (2075-4418); Sep2023, Vol. 13 Issue 17, p2759, 9p
Témata: COMPUTER software, CHILD development, ULTRASONIC imaging, HIRSCHSPRUNG'S disease, MORPHOMETRICS, PEDIATRIC surgeons
Abstrakt: Ultra-high-frequency ultrasound (UHFUS) has a reported potential to differentiate between aganglionic and ganglionic bowel wall, referred to as histoanatomical differences. A good correlation between histoanatomy and UHFUS of the bowel wall has been proven. In order to perform more precise and objective histoanatomical morphometrics, the main research objective of this study was to develop a computer program for the assessment and automatic calculation of the histoanatomical morphometrics of the bowel wall in UHFUS images. A computer program for UHFUS diagnostics was developed and presented. A user interface was developed in close collaboration between pediatric surgeons and biomedical engineers, to enable interaction with UHFUS images. Images from ex vivo bowel wall samples of 23 children with recto-sigmoid Hirschsprung's disease were inserted. The program calculated both thickness and amplitudes (image whiteness) within different histoanatomical bowel wall layers. Two observers assessed the images using the program and the inter-observer variability was evaluated. There was an excellent agreement between observers, with an intraclass correlation coefficient range of 0.970–0.998. Bland–Altman plots showed flat and narrow distributions. The mean differences ranged from 0.005 to 0.016 mm in thickness and 0 to 0.7 in amplitude units, corresponding to 1.1–3.6% and 0.0–0.8% from the overall mean. The computer program enables and ensures objective, accurate and time-efficient measurements of histoanatomical thicknesses and amplitudes in UHFUS images of the bowel wall. The program can potentially be used for several bowel wall conditions, accelerating research within UHFUS diagnostics. [ABSTRACT FROM AUTHOR]
Copyright of Diagnostics (2075-4418) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Biomedical Index
Popis
Abstrakt:Ultra-high-frequency ultrasound (UHFUS) has a reported potential to differentiate between aganglionic and ganglionic bowel wall, referred to as histoanatomical differences. A good correlation between histoanatomy and UHFUS of the bowel wall has been proven. In order to perform more precise and objective histoanatomical morphometrics, the main research objective of this study was to develop a computer program for the assessment and automatic calculation of the histoanatomical morphometrics of the bowel wall in UHFUS images. A computer program for UHFUS diagnostics was developed and presented. A user interface was developed in close collaboration between pediatric surgeons and biomedical engineers, to enable interaction with UHFUS images. Images from ex vivo bowel wall samples of 23 children with recto-sigmoid Hirschsprung's disease were inserted. The program calculated both thickness and amplitudes (image whiteness) within different histoanatomical bowel wall layers. Two observers assessed the images using the program and the inter-observer variability was evaluated. There was an excellent agreement between observers, with an intraclass correlation coefficient range of 0.970–0.998. Bland–Altman plots showed flat and narrow distributions. The mean differences ranged from 0.005 to 0.016 mm in thickness and 0 to 0.7 in amplitude units, corresponding to 1.1–3.6% and 0.0–0.8% from the overall mean. The computer program enables and ensures objective, accurate and time-efficient measurements of histoanatomical thicknesses and amplitudes in UHFUS images of the bowel wall. The program can potentially be used for several bowel wall conditions, accelerating research within UHFUS diagnostics. [ABSTRACT FROM AUTHOR]
ISSN:20754418
DOI:10.3390/diagnostics13172759