DeepSmile: Anomaly Detection Software for Facial Movement Assessment.

Saved in:
Bibliographic Details
Title: DeepSmile: Anomaly Detection Software for Facial Movement Assessment.
Authors: Rodríguez Martínez, Eder A., Polezhaeva, Olga, Marcellin, Félix, Colin, Émilien, Boyaval, Lisa, Sarhan, François-Régis, Dakpé, Stéphanie
Source: Diagnostics (2075-4418); Jan2023, Vol. 13 Issue 2, p254, 14p
Subject Terms: MACHINE learning, NONVERBAL communication, GRAPHICAL user interfaces, FACIAL paralysis, DEEP learning
Abstract: Facial movements are crucial for human interaction because they provide relevant information on verbal and non-verbal communication and social interactions. From a clinical point of view, the analysis of facial movements is important for diagnosis, follow-up, drug therapy, and surgical treatment. Current methods of assessing facial palsy are either (i) objective but inaccurate, (ii) subjective and, thus, depending on the clinician's level of experience, or (iii) based on static data. To address the aforementioned problems, we implemented a deep learning algorithm to assess facial movements during smiling. Such a model was trained on a dataset that contains healthy smiles only following an anomaly detection strategy. Generally speaking, the degree of anomaly is computed by comparing the model's suggested healthy smile with the person's actual smile. The experimentation showed that the model successfully computed a high degree of anomaly when assessing the patients' smiles. Furthermore, a graphical user interface was developed to test its practical usage in a clinical routine. In conclusion, we present a deep learning model, implemented on open-source software, designed to help clinicians to assess facial movements. [ABSTRACT FROM AUTHOR]
Copyright of Diagnostics (2075-4418) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Biomedical Index
Description
Abstract:Facial movements are crucial for human interaction because they provide relevant information on verbal and non-verbal communication and social interactions. From a clinical point of view, the analysis of facial movements is important for diagnosis, follow-up, drug therapy, and surgical treatment. Current methods of assessing facial palsy are either (i) objective but inaccurate, (ii) subjective and, thus, depending on the clinician's level of experience, or (iii) based on static data. To address the aforementioned problems, we implemented a deep learning algorithm to assess facial movements during smiling. Such a model was trained on a dataset that contains healthy smiles only following an anomaly detection strategy. Generally speaking, the degree of anomaly is computed by comparing the model's suggested healthy smile with the person's actual smile. The experimentation showed that the model successfully computed a high degree of anomaly when assessing the patients' smiles. Furthermore, a graphical user interface was developed to test its practical usage in a clinical routine. In conclusion, we present a deep learning model, implemented on open-source software, designed to help clinicians to assess facial movements. [ABSTRACT FROM AUTHOR]
ISSN:20754418
DOI:10.3390/diagnostics13020254