Reliability of Heterogeneous Distributed Computing Systems in the Presence of Correlated Failures.

Saved in:
Bibliographic Details
Title: Reliability of Heterogeneous Distributed Computing Systems in the Presence of Correlated Failures.
Authors: Pezoa, Jorge E., Hayat, Majeed M.
Source: IEEE Transactions on Parallel & Distributed Systems; Apr2014, Vol. 25 Issue 4, p1034-1043, 10p
Subject Terms: HETEROGENEOUS distributed computing, STOCHASTIC analysis, MONTE Carlo method, LOAD balancing (Computer networks), DISTRIBUTED computing, ALGORITHMS
Abstract: While the reliability of distributed-computing systems (DCSs) has been widely studied under the assumption that computing elements (CEs) fail independently, the impact of correlated failures of CEs on the reliability remains an open question. Here, the problem of modeling and assessing the impact of stochastic, correlated failures on the service reliability of applications running on DCSs is tackled. The service reliability is modeled using an integrated analytical and Monte-Carlo (MC) approach. The analytical component of the model comprises a generalization of a previously developed model for reliability of non-Markovian DCSs to a setting where specific patterns of simultaneous failures in CEs are allowed. The analytical model is complemented by a MC-based procedure to draw correlated-failure patterns using the recently reported concept of probabilistic shared risk groups (PSRGs). The reliability model is further utilized to develop and optimize a novel class of dynamic task reallocation (DTR) policies that maximize the reliability of DCSs in the presence of correlated failures. Theoretical predictions, MC simulations, and results from an emulation testbed show that the reliability can be improved when DTR policies correctly account for correlated failures. The impact of correlated failures of CEs on the reliability and the key dependence of DTR policies on the type of correlated failures are also investigated. [ABSTRACT FROM PUBLISHER]
Copyright of IEEE Transactions on Parallel & Distributed Systems is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:While the reliability of distributed-computing systems (DCSs) has been widely studied under the assumption that computing elements (CEs) fail independently, the impact of correlated failures of CEs on the reliability remains an open question. Here, the problem of modeling and assessing the impact of stochastic, correlated failures on the service reliability of applications running on DCSs is tackled. The service reliability is modeled using an integrated analytical and Monte-Carlo (MC) approach. The analytical component of the model comprises a generalization of a previously developed model for reliability of non-Markovian DCSs to a setting where specific patterns of simultaneous failures in CEs are allowed. The analytical model is complemented by a MC-based procedure to draw correlated-failure patterns using the recently reported concept of probabilistic shared risk groups (PSRGs). The reliability model is further utilized to develop and optimize a novel class of dynamic task reallocation (DTR) policies that maximize the reliability of DCSs in the presence of correlated failures. Theoretical predictions, MC simulations, and results from an emulation testbed show that the reliability can be improved when DTR policies correctly account for correlated failures. The impact of correlated failures of CEs on the reliability and the key dependence of DTR policies on the type of correlated failures are also investigated. [ABSTRACT FROM PUBLISHER]
ISSN:10459219
DOI:10.1109/TPDS.2013.78