Energy-aware scheduling of distributed systems using cellular automata.

Uloženo v:
Podrobná bibliografie
Název: Energy-aware scheduling of distributed systems using cellular automata.
Autoři: Agrawal, Pragati, Rao, Shrisha
Zdroj: 2012 IEEE International Systems Conference SysCon 2012; 1/ 1/2012, p1-6, 6p
Abstrakt: In today's world of large distributed systems, the need for energy efficiency of individual components is complemented by the need for energy awareness of the complete system. Hence, energy-aware scheduling of tasks on systems has become very important. Our work addresses the problem of finding an energy-aware schedule for a given system which also satisfies the precedence constraints between tasks to be performed by the system. We present a method which uses cellular automata to find a near-optimal schedule for the system. The rules for cellular automata are learned using a genetic algorithm. Though the work presented in this paper is not limited to scheduling in computing environments only, the work is validated with a sample simulation on distributed computing systems, and tested with some standard program graphs. [ABSTRACT FROM PUBLISHER]
Copyright of 2012 IEEE International Systems Conference SysCon 2012 is the property of IEEE and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:In today's world of large distributed systems, the need for energy efficiency of individual components is complemented by the need for energy awareness of the complete system. Hence, energy-aware scheduling of tasks on systems has become very important. Our work addresses the problem of finding an energy-aware schedule for a given system which also satisfies the precedence constraints between tasks to be performed by the system. We present a method which uses cellular automata to find a near-optimal schedule for the system. The rules for cellular automata are learned using a genetic algorithm. Though the work presented in this paper is not limited to scheduling in computing environments only, the work is validated with a sample simulation on distributed computing systems, and tested with some standard program graphs. [ABSTRACT FROM PUBLISHER]
ISBN:9781467307482
DOI:10.1109/SysCon.2012.6189481