PROGNOSTIC UTILITY OF THE LACTATE-TO-ALBUMIN RATIO FOR PREDICTING 28-DAY ALL-CAUSE MORTALITY IN CRITICALLY ILL CASES WITH ACUTE SEPSIS: A RETROSPECTIVE STUDY ON THE BASIS OF MIMIC-IV CRITICAL CARE DATABASE.

Saved in:
Bibliographic Details
Title: PROGNOSTIC UTILITY OF THE LACTATE-TO-ALBUMIN RATIO FOR PREDICTING 28-DAY ALL-CAUSE MORTALITY IN CRITICALLY ILL CASES WITH ACUTE SEPSIS: A RETROSPECTIVE STUDY ON THE BASIS OF MIMIC-IV CRITICAL CARE DATABASE.
Alternate Title: PROGNOSTIČKA KORISNOST ODNOSA LAKTATA I ALBUMINA ZA PREDVIĐANJE MORTALITETA OD SVIH UZROKA U ROKU OD 28 DANA KOD KRITIČNO OBOLELIH SA AKUTNOM SEPSOM: RETROSPEKTIVNA STUDIJA NA OSNOVU BAZE PODATAKA INTENZIVNE NEGE MIMIC-IV. (Bosnian)
Authors: Cheng, Jiaqi, Hou, Jiatong, Wang, Yuefu
Source: Journal of Medical Biochemistry; Dec2025, Vol. 44 Issue 9, p1943-1950, 8p
Subject Terms: SEPSIS, BIOMARKERS, DEATH forecasting, MEDICAL databases, CRITICAL care medicine, RETROSPECTIVE studies, PROGNOSTIC models
Abstract (English): Background: Sepsis constitutes a systemic dysregulated host response to infection and remains a predominant cause of ICU mortality globally. Given the limitations of conventional prognostic models (e.g., SOFA and APACHE II), incorporating variably subjective parameters, there is a pressing need to identify robust, objective biomarkers for early mortality risk stratification. This investigation delineated the prognostic significance of the lactate-to-albumin ratio (LAR) in predicting 28-day all-cause mortality (28- DACM) among critically ill septic cases. Methods: We performed a retrospective analysis utilizing the MIMIC-IV database (2008–2019), comprising 5,398 adult cases who met Sepsis-3 diagnostic criteria. Clinical and laboratory data within the initial 24-h post-ICU admission were extracted. The LASSO regression algorithm was implemented as a regularization technique to mitigate multicollinearity, enhance model generalizability, and facilitate high-dimensional feature selection. It was made to evaluate the prognostic utility of LAR through Kaplan-Meier (KM) survival estimation, receiver operating characteristic (ROC) curve analysis, and multivariate logistic regression modeling. Results: LAR values were remarkably escalated in non-survivors relative to survivors (median, 0.9 vs. 0.6; P < 0.001). ROC curve analysis unveiled that LAR outperformed lactate (AUC: 63.52%), albumin (AUC: 43.34%), and the SOFA score (AUC: 59.87%), achieving the highest discriminatory capacity (AUC: 64.71%; 95% CI: 62.85– 66.58%). An optimal LAR threshold of 1.032 was identified, attaining sensitivity and specificity of 45.1% and 76.6%, respectively. KM analysis uncovered remarkably attenuated 28-day survival in cases with LAR ≥1.032 (P < 0.001). Multivariate logistic regression confirmed LAR as an independent predictor of 28-DACM (OR = 1.32; P < 0.001), following adjusting for confounding variables. Conclusions: The LAR serves as a clinically accessible, objective biomarker with superior prognostic performance relative to established indicators in association with sepsis. Its integration into early risk assessment algorithms may enhance prognostication and inform timely therapeutic decision-making. Prospective, multicenter investigations are warranted to validate its external generalizability and clinical utility. [ABSTRACT FROM AUTHOR]
Abstract (Bosnian): Uvod: Sepsa predstavlja sistemski disregulisani odgovor domaćina na infekciju i ostaje dominantan uzrok smrtnosti na intenzivnoj nezi širom sveta. S obzirom na ograničenja konvencionalnih prognostičkih modela (npr. SOFA i APACHE II), koji uključuju varijabilno subjektivne parametre, postoji hitna potreba za identifikacijom robusnih, objektivnih biomarkera za ranu stratifikaciju rizika od smrtnosti. Ovo istraživanje je definisalo prognostički značaj odnosa laktata i albumina (LAR) u predviđanju 28dnevnog mortaliteta od svih uzroka (28DACM) kod kritično bolesnih septičnih slučajeva. Metode: Sproveli smo retrospektivnu analizu koristeći bazu podataka MIMICIV (20082019), koja je obuhvatila 5.398 odraslih slučajeva koji su ispunjavali dijagnostičke kriterijume za sepsu 3. Ekstrahovani su klinički i laboratorijski podaci u prvih 24 sata nakon prijema na intenzivnu negu. LASSO algoritam regresije je implementiran kao tehnika regularizacije radi ublažavanja multikolinearnosti, poboljšanja generalizacije modela i olakšavanja odabira visokodimenzionalnih karakteristika. Napravljen je da bi se procenila prognostička korisnost LARa putem procene preživljavanja KaplanMajerovom (KM), analize ROC krive i multivarijantnog logističkog regresionog modeliranja. Rezultati: Vrednosti LARa su bile značajno povećane kod nepreživelih u odnosu na preživele (medijana, 0,9 naspram 0,6; P < 0,001). Analiza ROC krive je otkrila da je LAR nadmašio laktat (AUC: 63,52%), albumin (AUC: 43,34%) i SOFA skor (AUC: 59,87%), postižući najveći diskriminatorni kapacitet (AUC: 64,71%; 95% CI: 62,8566,58%). Identifikovan je optimalni prag LARa od 1,032, uz dostižanje osetljivosti i specifičnosti od 45,1% i 76,6%, respektivno. KM analiza je otkrila značajno smanjeno preživljavanje od 28 dana u slučajevima sa LAR ≥1,032 (P < 0,001). Multivarijantna logistička regresija je potvrdila LAR kao nezavisni prediktor 28DACM (OR = 1,32; P < 0,001), nakon prilagođavanja za zbunjujuće varijable. Zaključak: LAR služi kao klinički pristupačan, objektivan biomarker sa superiornim prognostičkim učinkom u odnosu na utvrđene indikatore povezane sa sepsom. Njegova integracija u algoritme za ranu procenu rizika može poboljšati prognozu i informisati blagovremeno donošenje terapijskih odluka. Potrebna su prospektivna, multicentrična istraživanja kako bi se potvrdila njegova eksterna generalizacija i klinička korisnost. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Medical Biochemistry is the property of Society of Medical Biochemists of Serbia and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Background: Sepsis constitutes a systemic dysregulated host response to infection and remains a predominant cause of ICU mortality globally. Given the limitations of conventional prognostic models (e.g., SOFA and APACHE II), incorporating variably subjective parameters, there is a pressing need to identify robust, objective biomarkers for early mortality risk stratification. This investigation delineated the prognostic significance of the lactate-to-albumin ratio (LAR) in predicting 28-day all-cause mortality (28- DACM) among critically ill septic cases. Methods: We performed a retrospective analysis utilizing the MIMIC-IV database (2008–2019), comprising 5,398 adult cases who met Sepsis-3 diagnostic criteria. Clinical and laboratory data within the initial 24-h post-ICU admission were extracted. The LASSO regression algorithm was implemented as a regularization technique to mitigate multicollinearity, enhance model generalizability, and facilitate high-dimensional feature selection. It was made to evaluate the prognostic utility of LAR through Kaplan-Meier (KM) survival estimation, receiver operating characteristic (ROC) curve analysis, and multivariate logistic regression modeling. Results: LAR values were remarkably escalated in non-survivors relative to survivors (median, 0.9 vs. 0.6; P < 0.001). ROC curve analysis unveiled that LAR outperformed lactate (AUC: 63.52%), albumin (AUC: 43.34%), and the SOFA score (AUC: 59.87%), achieving the highest discriminatory capacity (AUC: 64.71%; 95% CI: 62.85– 66.58%). An optimal LAR threshold of 1.032 was identified, attaining sensitivity and specificity of 45.1% and 76.6%, respectively. KM analysis uncovered remarkably attenuated 28-day survival in cases with LAR ≥1.032 (P < 0.001). Multivariate logistic regression confirmed LAR as an independent predictor of 28-DACM (OR = 1.32; P < 0.001), following adjusting for confounding variables. Conclusions: The LAR serves as a clinically accessible, objective biomarker with superior prognostic performance relative to established indicators in association with sepsis. Its integration into early risk assessment algorithms may enhance prognostication and inform timely therapeutic decision-making. Prospective, multicenter investigations are warranted to validate its external generalizability and clinical utility. [ABSTRACT FROM AUTHOR]
ISSN:14528258
DOI:10.5937/jomb0-59662