Marginal models with individual-specific effects for the analysis of longitudinal bipartite networks.

Uložené v:
Podrobná bibliografia
Názov: Marginal models with individual-specific effects for the analysis of longitudinal bipartite networks.
Autori: Bartolucci, Francesco, Mira, Antonietta, Peluso, Stefano
Zdroj: Advances in Data Analysis & Classification; Dec2025, Vol. 19 Issue 4, p895-920, 26p
Abstrakt: A new modeling framework for bipartite social networks arising from a sequence of partially time-ordered relational events is proposed. We directly model the joint distribution of the binary variables indicating if each single actor is involved or not in an event. The adopted parametrization is based on first- and second-order effects, formulated as in marginal models for categorical data and free higher order effects. In particular, second-order effects are log-odds ratios with meaningful interpretation from the social perspective in terms of tendency to cooperate, in contrast to first-order effects interpreted in terms of tendency of each single actor to participate in an event. These effects are parametrized on the basis of the event times, so that suitable latent trajectories of individual behaviors may be represented. Inference is based on a composite likelihood function, maximized by an algorithm with numerical complexity proportional to the square of the number of units in the network. A classification composite likelihood is used to cluster the actors, simplifying the interpretation of the data structure. The proposed approach is illustrated on simulated data and on a dataset of scientific articles published in four top statistical journals from 2003 to 2012. [ABSTRACT FROM AUTHOR]
Copyright of Advances in Data Analysis & Classification is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáza: Complementary Index
Popis
Abstrakt:A new modeling framework for bipartite social networks arising from a sequence of partially time-ordered relational events is proposed. We directly model the joint distribution of the binary variables indicating if each single actor is involved or not in an event. The adopted parametrization is based on first- and second-order effects, formulated as in marginal models for categorical data and free higher order effects. In particular, second-order effects are log-odds ratios with meaningful interpretation from the social perspective in terms of tendency to cooperate, in contrast to first-order effects interpreted in terms of tendency of each single actor to participate in an event. These effects are parametrized on the basis of the event times, so that suitable latent trajectories of individual behaviors may be represented. Inference is based on a composite likelihood function, maximized by an algorithm with numerical complexity proportional to the square of the number of units in the network. A classification composite likelihood is used to cluster the actors, simplifying the interpretation of the data structure. The proposed approach is illustrated on simulated data and on a dataset of scientific articles published in four top statistical journals from 2003 to 2012. [ABSTRACT FROM AUTHOR]
ISSN:18625347
DOI:10.1007/s11634-024-00604-7