Exposure Risks from Microbiological Hazards in Buildings and Their Control—A Rapid Review of the Evidence.

Saved in:
Bibliographic Details
Title: Exposure Risks from Microbiological Hazards in Buildings and Their Control—A Rapid Review of the Evidence.
Authors: Beswick, Alan, Crook, Brian, Gosling, Becky, Bailey, Claire, Rosa, Iwona, Senior, Helena, Johnson, Paul, Persaud, Ruby, Barker, Penny, Buckley, Paul, Saunders, John, Hulme, Jack, Ahmed, Ali
Source: Atmosphere; Nov2025, Vol. 16 Issue 11, p1243, 37p
Subject Terms: VENTILATION, PATHOGENIC microorganisms, HAZARDS, FUNGAL colonies, BUILDING design & construction, INDOOR air quality, POLLUTANTS
Abstract: A rapid review was undertaken to consider the evidence for human exposure to harmful microorganisms from indoor air and surfaces. Published information about these contaminants, as well as measures to control them, including building design and energy conservation, were included in this review. Information on domestic dwellings, office environments, and other non-industrial settings was assessed to determine the reported prevalence, persistence, and transmission of microorganisms in these settings. Environmental factors that influence indoor microbiological colonization were also included. The evidence strongly indicates that ventilation is the primary factor for controlling indoor dampness, helping to mitigate indoor mold colonization and the accumulation of other indoor contaminants, including infectious microorganisms. Although modern building airtightness, including retrofits of older builds, contributes to thermal comfort and building energy efficiency, this may also limit a building's ventilation capacity. This in turn can potentially allow biological pollutants to accumulate, increasing the likelihood of harmful exposures and ill-health effects for building occupants. Effective building design and maintenance, which promote appropriate levels of air exchange for indoor spaces, are therefore important for the control of indoor moisture and microbiological contamination. [ABSTRACT FROM AUTHOR]
Copyright of Atmosphere is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:A rapid review was undertaken to consider the evidence for human exposure to harmful microorganisms from indoor air and surfaces. Published information about these contaminants, as well as measures to control them, including building design and energy conservation, were included in this review. Information on domestic dwellings, office environments, and other non-industrial settings was assessed to determine the reported prevalence, persistence, and transmission of microorganisms in these settings. Environmental factors that influence indoor microbiological colonization were also included. The evidence strongly indicates that ventilation is the primary factor for controlling indoor dampness, helping to mitigate indoor mold colonization and the accumulation of other indoor contaminants, including infectious microorganisms. Although modern building airtightness, including retrofits of older builds, contributes to thermal comfort and building energy efficiency, this may also limit a building's ventilation capacity. This in turn can potentially allow biological pollutants to accumulate, increasing the likelihood of harmful exposures and ill-health effects for building occupants. Effective building design and maintenance, which promote appropriate levels of air exchange for indoor spaces, are therefore important for the control of indoor moisture and microbiological contamination. [ABSTRACT FROM AUTHOR]
ISSN:20734433
DOI:10.3390/atmos16111243