Heterogeneous Ensemble Sentiment Classification Model Integrating Multi-View Features and Dynamic Weighting.

Uloženo v:
Podrobná bibliografie
Název: Heterogeneous Ensemble Sentiment Classification Model Integrating Multi-View Features and Dynamic Weighting.
Autoři: Yang, Song, Xing, Jiayao, Dong, Zongran, Liu, Zhaoxia
Zdroj: Electronics (2079-9292); Nov2025, Vol. 14 Issue 21, p4189, 31p
Témata: SENTIMENT analysis, ENSEMBLE learning, CLASSIFICATION, FEATURE extraction
Abstrakt: With the continuous growth of user reviews, identifying underlying sentiment across multi-source texts efficiently and accurately has become a significant challenge in NLP. Traditional single models in cross-domain sentiment analysis often exhibit insufficient stability, limited generalization capabilities, and sensitivity to class imbalance. Existing ensemble methods predominantly rely on static weighting or voting strategies among homogeneous models, failing to fully leverage the complementary advantages between models. To address these issues, this study proposes a heterogeneous ensemble sentiment classification model integrating multi-view features and dynamic weighting. At the feature learning layer, the model constructs three complementary base learners, a RoBERTa-FC for extracting global semantic features, a BERT-BiGRU for capturing temporal dependencies, and a TextCNN-Attention for focusing on local semantic features, thereby achieving multi-level text representation. At the decision layer, a meta-learner is used to fuse multi-view features, and dynamic uncertainty weighting and attention weighting strategies are employed to adaptively adjust outputs from different base learners. Experimental results across multiple domains demonstrate that the proposed model consistently outperforms single learners and comparison methods in terms of Accuracy, Precision, Recall, F1 Score, and Macro-AUC. On average, the ensemble model achieves a Macro-AUC of 0.9582 ± 0.023 across five datasets, with an Accuracy of 0.9423, an F1 Score of 0.9590, and a Macro-AUC of 0.9797 on the AlY_ds dataset. Moreover, in cross-dataset ranking evaluation based on equally weighted metrics, the model consistently ranks within the top two, confirming its superior cross-domain adaptability and robustness. These findings highlight the effectiveness of the proposed framework in enhancing sentiment classification performance and provide valuable insights for future research on lightweight dynamic ensembles, multilingual, and multimodal applications. [ABSTRACT FROM AUTHOR]
Copyright of Electronics (2079-9292) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:With the continuous growth of user reviews, identifying underlying sentiment across multi-source texts efficiently and accurately has become a significant challenge in NLP. Traditional single models in cross-domain sentiment analysis often exhibit insufficient stability, limited generalization capabilities, and sensitivity to class imbalance. Existing ensemble methods predominantly rely on static weighting or voting strategies among homogeneous models, failing to fully leverage the complementary advantages between models. To address these issues, this study proposes a heterogeneous ensemble sentiment classification model integrating multi-view features and dynamic weighting. At the feature learning layer, the model constructs three complementary base learners, a RoBERTa-FC for extracting global semantic features, a BERT-BiGRU for capturing temporal dependencies, and a TextCNN-Attention for focusing on local semantic features, thereby achieving multi-level text representation. At the decision layer, a meta-learner is used to fuse multi-view features, and dynamic uncertainty weighting and attention weighting strategies are employed to adaptively adjust outputs from different base learners. Experimental results across multiple domains demonstrate that the proposed model consistently outperforms single learners and comparison methods in terms of Accuracy, Precision, Recall, F1 Score, and Macro-AUC. On average, the ensemble model achieves a Macro-AUC of 0.9582 ± 0.023 across five datasets, with an Accuracy of 0.9423, an F1 Score of 0.9590, and a Macro-AUC of 0.9797 on the AlY_ds dataset. Moreover, in cross-dataset ranking evaluation based on equally weighted metrics, the model consistently ranks within the top two, confirming its superior cross-domain adaptability and robustness. These findings highlight the effectiveness of the proposed framework in enhancing sentiment classification performance and provide valuable insights for future research on lightweight dynamic ensembles, multilingual, and multimodal applications. [ABSTRACT FROM AUTHOR]
ISSN:20799292
DOI:10.3390/electronics14214189