Analysis of SD-WAN Architectures and Techniques for Efficient Traffic Control Under Transmission Constraints—Overview of Solutions.
Saved in:
| Title: | Analysis of SD-WAN Architectures and Techniques for Efficient Traffic Control Under Transmission Constraints—Overview of Solutions. |
|---|---|
| Authors: | Dudczyk, Janusz, Sergiel, Mateusz, Krygier, Jaroslaw |
| Source: | Sensors (14248220); Oct2025, Vol. 25 Issue 20, p6317, 33p |
| Subject Terms: | SOFTWARE-defined networking, COMPUTER network security, OVERLAY networks, SCALABILITY, BANDWIDTH allocation, COMPUTER network monitoring |
| Abstract: | Software-Defined Wide Area Networks (SD-WAN) have emerged as a rapidly evolving technology designed to meet the growing demand for flexible, secure, and scalable network infrastructures. This paper provides a review of SD-WAN techniques, focusing on their principles of operation, mechanisms, and evolution, with particular attention to applications in resource-constrained environments such as mobile, satellite, and radio networks. The analysis highlights key architectural elements, including security mechanisms, monitoring methods and metrics, and management protocols. A classification of both commercial (e.g., Cisco SD-WAN, Fortinet Secure SD-WAN, VMware SD-WAN, Palo Alto Prisma SD-WAN, HPE Aruba EdgeConnect) and research-based solutions is presented. The overview covers overlay protocols such as Overlay Management Protocol (OMP), Dynamic Multipath Optimization (DMPO), App-ID, OpenFlow, and NETCONF, as well as tunneling mechanisms such as IPsec and WireGuard. The discussion further covers control plane architectures (centralized, distributed, and hybrid) and network monitoring methods, including latency, jitter, and packet loss measurement. The growing importance of Artificial Intelligence (AI) in optimizing path selection and improving threat detection in SD-WAN environments, especially in resource-constrained networks, is emphasized. Analysis of solutions indicates that SD-WAN improves performance, reduces latency, and lowers operating costs compared to traditional WAN architectures. The paper concludes with guidelines and recommendations for using SD-WAN in resource-constrained environments. [ABSTRACT FROM AUTHOR] |
| Copyright of Sensors (14248220) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) | |
| Database: | Complementary Index |
| Abstract: | Software-Defined Wide Area Networks (SD-WAN) have emerged as a rapidly evolving technology designed to meet the growing demand for flexible, secure, and scalable network infrastructures. This paper provides a review of SD-WAN techniques, focusing on their principles of operation, mechanisms, and evolution, with particular attention to applications in resource-constrained environments such as mobile, satellite, and radio networks. The analysis highlights key architectural elements, including security mechanisms, monitoring methods and metrics, and management protocols. A classification of both commercial (e.g., Cisco SD-WAN, Fortinet Secure SD-WAN, VMware SD-WAN, Palo Alto Prisma SD-WAN, HPE Aruba EdgeConnect) and research-based solutions is presented. The overview covers overlay protocols such as Overlay Management Protocol (OMP), Dynamic Multipath Optimization (DMPO), App-ID, OpenFlow, and NETCONF, as well as tunneling mechanisms such as IPsec and WireGuard. The discussion further covers control plane architectures (centralized, distributed, and hybrid) and network monitoring methods, including latency, jitter, and packet loss measurement. The growing importance of Artificial Intelligence (AI) in optimizing path selection and improving threat detection in SD-WAN environments, especially in resource-constrained networks, is emphasized. Analysis of solutions indicates that SD-WAN improves performance, reduces latency, and lowers operating costs compared to traditional WAN architectures. The paper concludes with guidelines and recommendations for using SD-WAN in resource-constrained environments. [ABSTRACT FROM AUTHOR] |
|---|---|
| ISSN: | 14248220 |
| DOI: | 10.3390/s25206317 |
Full Text Finder
Nájsť tento článok vo Web of Science