Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy.

Saved in:
Bibliographic Details
Title: Protective Effects of PACAP in Diabetic Complications: Retinopathy, Nephropathy and Neuropathy.
Authors: Reglodi, Dora, Tamas, Andrea, Bosnyak, Inez, Atlasz, Tamas, Szabo, Edina, Li, Lina, Horvath, Gabriella, Opper, Balazs, Kiss, Peter, Lucas, Liliana, Maugeri, Grazia, D'Amico, Agata Grazia, D'Agata, Velia, Fabian, Eszter, Reman, Gyongyver, Vaczy, Alexandra
Source: International Journal of Molecular Sciences; Oct2025, Vol. 26 Issue 19, p9650, 26p
Subject Terms: PITUITARY adenylate cyclase activating polypeptide, DIABETES, THERAPEUTICS, DIABETIC retinopathy, NEUROPATHY, KIDNEY diseases, NEUROPEPTIDES, TREATMENT effectiveness
Abstract: Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide exerting, among others, strong trophic and protective effects. It plays a role in several physiological functions, including glucose homeostasis. The protective effects of PACAP are mainly mediated via its specific PAC1 receptor by stimulating anti-inflammatory, anti-apoptotic and antioxidant pathways. The aim of the present review is to summarize data on the protective effects of PACAP in the three major complications of diabetes, retinopathy, nephropathy and neuropathy, as well as some other complications. In type 1 and type 2 diabetic retinopathy models and in glucose-exposed cells of the eye, PACAP counteracted the degeneration of retinal layers and inhibited apoptosis and factors leading to abnormal vessel growth. In models of nephropathy, kidney morphology was better retained after PACAP administration, with decreased apoptosis and fibrosis. In diabetic neuropathy, PACAP protected against axonal–myelin lesions and less activation in pain processing centers. This neuropeptide has several other beneficial effects in diabetes-induced complications like altered vascular response, cognitive deficits and atherosclerosis. The promising therapeutic effects of PACAP in several pathological conditions have encouraged researchers to design PACAP-related drugs and to develop ways to enhance tissue delivery. These intentions are expected to result in overcoming the hurdles preventing PACAP from being introduced into therapeutic treatments, including diabetes-related conditions. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Molecular Sciences is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide exerting, among others, strong trophic and protective effects. It plays a role in several physiological functions, including glucose homeostasis. The protective effects of PACAP are mainly mediated via its specific PAC1 receptor by stimulating anti-inflammatory, anti-apoptotic and antioxidant pathways. The aim of the present review is to summarize data on the protective effects of PACAP in the three major complications of diabetes, retinopathy, nephropathy and neuropathy, as well as some other complications. In type 1 and type 2 diabetic retinopathy models and in glucose-exposed cells of the eye, PACAP counteracted the degeneration of retinal layers and inhibited apoptosis and factors leading to abnormal vessel growth. In models of nephropathy, kidney morphology was better retained after PACAP administration, with decreased apoptosis and fibrosis. In diabetic neuropathy, PACAP protected against axonal–myelin lesions and less activation in pain processing centers. This neuropeptide has several other beneficial effects in diabetes-induced complications like altered vascular response, cognitive deficits and atherosclerosis. The promising therapeutic effects of PACAP in several pathological conditions have encouraged researchers to design PACAP-related drugs and to develop ways to enhance tissue delivery. These intentions are expected to result in overcoming the hurdles preventing PACAP from being introduced into therapeutic treatments, including diabetes-related conditions. [ABSTRACT FROM AUTHOR]
ISSN:16616596
DOI:10.3390/ijms26199650