Predicting Efficiency and Capacity of Drag Embedment Anchors in Sand Seabed Using Tree Machine Learning Algorithms.

Gespeichert in:
Bibliographische Detailangaben
Titel: Predicting Efficiency and Capacity of Drag Embedment Anchors in Sand Seabed Using Tree Machine Learning Algorithms.
Autoren: Olyasani, Mojtaba, Azimi, Hamed, Shiri, Hodjat
Quelle: Geotechnics; Sep2025, Vol. 5 Issue 3, p56, 21p
Schlagwörter: GEOTECHNICAL engineering, ANCHORS, OCEAN bottom, RENEWABLE energy sources, MECHANICAL efficiency, MACHINE learning, OFFSHORE structures
Abstract: Drag embedment anchors (DEAs) play a vital role in maintaining the stability and safety of offshore structures, including floating wind turbines, oil rigs, and marine renewable energy systems. Accurate prediction of anchor performance is essential for optimizing mooring system designs, reducing costs, and minimizing risks in challenging marine environments. By leveraging advanced machine learning techniques, this research provides innovative solutions to longstanding challenges in geotechnical engineering, paving the way for more efficient and reliable offshore operations. The findings contribute significantly to developing sustainable marine infrastructure while addressing the growing global demand for renewable energy solutions in coastal and deep-water environments. This current study evaluated tree-based machine learning algorithms, e.g., decision tree regression (DTR) and random forest regression (RFR), to predict the holding capacity and efficiency of DEAs in sand seabed. To train and validate the results of machine learning models, the K-fold cross-validation method, with K = 5, was utilized. Eleven geotechnical and geometric parameters, including sand friction angle (φ), fluke-shank angle (α), and anchor dimensions, were analyzed using 23 model configurations. Results demonstrated that RFR outperformed DTR, achieving the highest accuracy for capacity prediction (R = 0.985, RMSE = 344.577 KN) and for efficiency (R = 0.977, RMSE = 0.821 KN). Key findings revealed that soil strength dominated capacity, while fluke-shank angle critically influenced efficiency. Single-parameter models failed to capture complex soil-anchor interactions, underscoring the necessity of multivariate analysis. The ensemble approach of RFR provided superior generalization across diverse seabed conditions, maintaining errors within ±10% for capacity and ±5% for efficiency. [ABSTRACT FROM AUTHOR]
Copyright of Geotechnics is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:Drag embedment anchors (DEAs) play a vital role in maintaining the stability and safety of offshore structures, including floating wind turbines, oil rigs, and marine renewable energy systems. Accurate prediction of anchor performance is essential for optimizing mooring system designs, reducing costs, and minimizing risks in challenging marine environments. By leveraging advanced machine learning techniques, this research provides innovative solutions to longstanding challenges in geotechnical engineering, paving the way for more efficient and reliable offshore operations. The findings contribute significantly to developing sustainable marine infrastructure while addressing the growing global demand for renewable energy solutions in coastal and deep-water environments. This current study evaluated tree-based machine learning algorithms, e.g., decision tree regression (DTR) and random forest regression (RFR), to predict the holding capacity and efficiency of DEAs in sand seabed. To train and validate the results of machine learning models, the K-fold cross-validation method, with K = 5, was utilized. Eleven geotechnical and geometric parameters, including sand friction angle (φ), fluke-shank angle (α), and anchor dimensions, were analyzed using 23 model configurations. Results demonstrated that RFR outperformed DTR, achieving the highest accuracy for capacity prediction (R = 0.985, RMSE = 344.577 KN) and for efficiency (R = 0.977, RMSE = 0.821 KN). Key findings revealed that soil strength dominated capacity, while fluke-shank angle critically influenced efficiency. Single-parameter models failed to capture complex soil-anchor interactions, underscoring the necessity of multivariate analysis. The ensemble approach of RFR provided superior generalization across diverse seabed conditions, maintaining errors within ±10% for capacity and ±5% for efficiency. [ABSTRACT FROM AUTHOR]
ISSN:26737094
DOI:10.3390/geotechnics5030056