Predictive Power of ESG Factors for DAX ESG 50 Index Forecasting Using Multivariate LSTM.

Gespeichert in:
Bibliographische Detailangaben
Titel: Predictive Power of ESG Factors for DAX ESG 50 Index Forecasting Using Multivariate LSTM.
Autoren: Rosinus, Manuel, Lansky, Jan
Quelle: International Journal of Financial Studies; Sep2025, Vol. 13 Issue 3, p167, 24p
Schlagwörter: LONG short-term memory, STOCK price forecasting, FINANCIAL markets, MACHINE learning, STOCK price indexes, PREDICTIVE tests, PREDICTIVE validity, SUSTAINABLE investing
Abstract: As investors increasingly use Environmental, Social, and Governance (ESG) criteria, a key challenge remains: ESG data is typically reported annually, while financial markets move much faster. This study investigates whether incorporating annual ESG scores can improve monthly stock return forecasts for German DAX-listed firms. We employ a multivariate long short-term memory (LSTM) network, a machine learning model ideal for time series data, to test this hypothesis over two periods: an 8-year analysis with a full set of ESG scores and a 16-year analysis with a single disclosure score. The evaluation of model performance utilizes standard error metrics and directional accuracy, while statistical significance is assessed through paired statistical tests and the Diebold–Mariano test. Furthermore, we employ SHapley Additive exPlanations (SHAP) to ensure model explainability. We observe no statistically significant indication that incorporating annual ESG data enhances forecast accuracy. The 8-year study indicates that using a comprehensive ESG feature set results in a statistically significant increase in forecast error (RMSE and MAE) compared to a baseline model that utilizes solely historical returns. The ESG-enhanced model demonstrates no significant performance disparity compared to the baseline across the 16-year investigation. Our findings indicate that within the one-month-ahead projection horizon, the informative value of low-frequency ESG data is either fully incorporated into the market or is concealed by the significant forecasting capability of the historical return series. This study's primary contribution is to demonstrate, through out-of-sample testing, that standard annual ESG information holds little practical value for generating predictive alpha, urging investors to seek more timely, alternative data sources. [ABSTRACT FROM AUTHOR]
Copyright of International Journal of Financial Studies is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:As investors increasingly use Environmental, Social, and Governance (ESG) criteria, a key challenge remains: ESG data is typically reported annually, while financial markets move much faster. This study investigates whether incorporating annual ESG scores can improve monthly stock return forecasts for German DAX-listed firms. We employ a multivariate long short-term memory (LSTM) network, a machine learning model ideal for time series data, to test this hypothesis over two periods: an 8-year analysis with a full set of ESG scores and a 16-year analysis with a single disclosure score. The evaluation of model performance utilizes standard error metrics and directional accuracy, while statistical significance is assessed through paired statistical tests and the Diebold–Mariano test. Furthermore, we employ SHapley Additive exPlanations (SHAP) to ensure model explainability. We observe no statistically significant indication that incorporating annual ESG data enhances forecast accuracy. The 8-year study indicates that using a comprehensive ESG feature set results in a statistically significant increase in forecast error (RMSE and MAE) compared to a baseline model that utilizes solely historical returns. The ESG-enhanced model demonstrates no significant performance disparity compared to the baseline across the 16-year investigation. Our findings indicate that within the one-month-ahead projection horizon, the informative value of low-frequency ESG data is either fully incorporated into the market or is concealed by the significant forecasting capability of the historical return series. This study's primary contribution is to demonstrate, through out-of-sample testing, that standard annual ESG information holds little practical value for generating predictive alpha, urging investors to seek more timely, alternative data sources. [ABSTRACT FROM AUTHOR]
ISSN:22277072
DOI:10.3390/ijfs13030167