Multi-omics reveals glucose repression of citric acid catabolism in Pichia kudriavzevii.

Gespeichert in:
Bibliographische Detailangaben
Titel: Multi-omics reveals glucose repression of citric acid catabolism in Pichia kudriavzevii.
Autoren: Cheng, Yichao, Wang, Xinyi, Wu, Di, Lu, Yao, Qin, Yi, Liu, Yanlin, Liang, Yanying, Song, Yuyang
Quelle: Applied Microbiology & Biotechnology; 9/16/2025, Vol. 109 Issue 1, p1-14, 14p
Schlagwörter: GLUCOSE metabolism, CATABOLITE repression, GENE expression, METABOLIC regulation, GLYCEROPHOSPHOLIPIDS, CITRIC acid, SACCHAROMYCES, METABOLITES
Abstract: Pichia kudriavzevii is a widely used yeast in the wine industry that can degrade citric acid. However, this process can be hindered by the presence of glucose through a phenomenon called carbon catabolite repression (CCR). Herein, this study determined the underlying mechanism by examining the effects of glucose on P. kudriavzevii. Our findings indicated that glucose inhibited the reduction of citric acid and maintained elevated levels of fatty acids and glycerophospholipids. However, the inhibition of citric acid degradation under glucose addition was related to the retarded accumulation of metabolites involved in the biosynthesis of antibiotics, propanoate metabolism, microbial metabolism in diverse environments, C5-branched dibasic acid metabolism, and metabolic pathways in diverse environments. Additionally, the integrated data revealed that citrate catabolism of P. kudriavzevii was remarkably repressed in response to glucose by regulating glycerophospholipid metabolism, carbon metabolism and the biosynthesis pathways of secondary metabolites. Further investigations indicated that the increase of fatty acids (e.g., alpha-linolenic and arachidic) and glycerophospholipids (e.g., dihydroxyacetone phosphate and glycerophosphocholine) under glucose addition was related to the up-regulated GPD1, PISD, HIS1 and RPIA gene expressions in glycerophospholipid metabolism and the down-regulated FBP1, MDH, IDH3, ICL1, ACL and JEN1 gene expressions in carbon metabolism and the biosynthesis pathways of secondary metabolites. Meantime, glucose regulated the expression of transcription factors (e.g., MIG1 and GCN4) associated with three pathways, which were crucial genes of CCR regulatory networks. Overall, we uncovered the metabolic regulatory network through which CCR inhibits citric acid utilization in P. kudriavzevii. Key points: • Metabolic changes of P. kudriavzevii cells responding to carbon sources were observed • Potential genes regulating citric acid degradation contributing to CCR were screened • The inhibition of citric acid degradation is due to changes in the regulatory network [ABSTRACT FROM AUTHOR]
Copyright of Applied Microbiology & Biotechnology is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:Pichia kudriavzevii is a widely used yeast in the wine industry that can degrade citric acid. However, this process can be hindered by the presence of glucose through a phenomenon called carbon catabolite repression (CCR). Herein, this study determined the underlying mechanism by examining the effects of glucose on P. kudriavzevii. Our findings indicated that glucose inhibited the reduction of citric acid and maintained elevated levels of fatty acids and glycerophospholipids. However, the inhibition of citric acid degradation under glucose addition was related to the retarded accumulation of metabolites involved in the biosynthesis of antibiotics, propanoate metabolism, microbial metabolism in diverse environments, C5-branched dibasic acid metabolism, and metabolic pathways in diverse environments. Additionally, the integrated data revealed that citrate catabolism of P. kudriavzevii was remarkably repressed in response to glucose by regulating glycerophospholipid metabolism, carbon metabolism and the biosynthesis pathways of secondary metabolites. Further investigations indicated that the increase of fatty acids (e.g., alpha-linolenic and arachidic) and glycerophospholipids (e.g., dihydroxyacetone phosphate and glycerophosphocholine) under glucose addition was related to the up-regulated GPD1, PISD, HIS1 and RPIA gene expressions in glycerophospholipid metabolism and the down-regulated FBP1, MDH, IDH3, ICL1, ACL and JEN1 gene expressions in carbon metabolism and the biosynthesis pathways of secondary metabolites. Meantime, glucose regulated the expression of transcription factors (e.g., MIG1 and GCN4) associated with three pathways, which were crucial genes of CCR regulatory networks. Overall, we uncovered the metabolic regulatory network through which CCR inhibits citric acid utilization in P. kudriavzevii. Key points: • Metabolic changes of P. kudriavzevii cells responding to carbon sources were observed • Potential genes regulating citric acid degradation contributing to CCR were screened • The inhibition of citric acid degradation is due to changes in the regulatory network [ABSTRACT FROM AUTHOR]
ISSN:01757598
DOI:10.1007/s00253-025-13590-3