UAV–Ground Vehicle Collaborative Delivery in Emergency Response: A Review of Key Technologies and Future Trends.

Uložené v:
Podrobná bibliografia
Názov: UAV–Ground Vehicle Collaborative Delivery in Emergency Response: A Review of Key Technologies and Future Trends.
Autori: Wang, Yizhe, Li, Jie, Yang, Xiaoguang, Peng, Qing
Zdroj: Applied Sciences (2076-3417); Sep2025, Vol. 15 Issue 17, p9803, 36p
Predmety: DRONE aircraft delivery, DECISION support systems, GROUPWARE (Computer software), RESOURCE allocation, ROBOTIC path planning, ARTIFICIAL intelligence, EMERGENCY medical services
Abstrakt: UAV delivery and ground transfer scheduling in emergency scenarios represent critical technological systems for enhancing disaster response capabilities and safeguarding lives and property. This study systematically reviews recent advances across eight core research domains: UAV emergency delivery systems, ground–air integrated transportation coordination, emergency logistics optimization, UAV path planning and scheduling algorithms, collaborative optimization between ground vehicles and UAVs, emergency response decision support systems, low-altitude economy and urban air traffic management, and intelligent transportation system integration. Research findings indicate that UAV delivery technologies in emergency contexts have evolved from single-aircraft applications to intelligent multi-modal collaborative systems, demonstrating significant advantages in medical supply distribution, disaster relief, and search-and-rescue operations. Current technological development exhibits four major trends: hybrid optimization algorithms, multi-UAV cooperation, artificial intelligence enhancement, and real-time adaptation capabilities. However, critical challenges persist, including regulatory framework integration, adverse weather adaptability, cybersecurity protection, human–machine interface design, cost–benefit assessment, and standardization deficiencies. Future research should prioritize distributed decision architectures, robustness optimization, cross-domain collaboration mechanisms, emerging technology integration, and practical application validation. This comprehensive review provides systematic theoretical foundations and practical guidance for emergency management agencies in formulating technology development strategies, enterprises in investment planning, and research institutions in determining research priorities. [ABSTRACT FROM AUTHOR]
Copyright of Applied Sciences (2076-3417) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáza: Complementary Index
Popis
Abstrakt:UAV delivery and ground transfer scheduling in emergency scenarios represent critical technological systems for enhancing disaster response capabilities and safeguarding lives and property. This study systematically reviews recent advances across eight core research domains: UAV emergency delivery systems, ground–air integrated transportation coordination, emergency logistics optimization, UAV path planning and scheduling algorithms, collaborative optimization between ground vehicles and UAVs, emergency response decision support systems, low-altitude economy and urban air traffic management, and intelligent transportation system integration. Research findings indicate that UAV delivery technologies in emergency contexts have evolved from single-aircraft applications to intelligent multi-modal collaborative systems, demonstrating significant advantages in medical supply distribution, disaster relief, and search-and-rescue operations. Current technological development exhibits four major trends: hybrid optimization algorithms, multi-UAV cooperation, artificial intelligence enhancement, and real-time adaptation capabilities. However, critical challenges persist, including regulatory framework integration, adverse weather adaptability, cybersecurity protection, human–machine interface design, cost–benefit assessment, and standardization deficiencies. Future research should prioritize distributed decision architectures, robustness optimization, cross-domain collaboration mechanisms, emerging technology integration, and practical application validation. This comprehensive review provides systematic theoretical foundations and practical guidance for emergency management agencies in formulating technology development strategies, enterprises in investment planning, and research institutions in determining research priorities. [ABSTRACT FROM AUTHOR]
ISSN:20763417
DOI:10.3390/app15179803