Enhancing Aquarium Fish Tracking with Mirror Reflection Elimination and Enhanced Deep Learning Techniques.

Gespeichert in:
Bibliographische Detailangaben
Titel: Enhancing Aquarium Fish Tracking with Mirror Reflection Elimination and Enhanced Deep Learning Techniques.
Autoren: Zhang, Kai-Di, Chu, Edward T.-H., Lee, Chia-Rong, Su, Jhih-Hua
Quelle: Electronics (2079-9292); Aug2025, Vol. 14 Issue 16, p3187, 25p
Schlagwörter: DEEP learning, OBJECT tracking (Computer vision), IMAGE processing, AQUARIUMS, OBJECT recognition (Computer vision), AQUARIUM fishes
Abstract: The popularity of keeping ornamental fish has grown increasingly, as their vibrant presence can provide a calming influence. Accurately assessing the health of ornamental fish is important but challenging. For this, researchers have focused on developing fish tracking methods that provide trajectories for health assessment. However, issues such as mirror images, occlusion, and motion prediction errors can significantly reduce the accuracy of existing algorithms. To address these problems, we propose a novel ornamental fish tracking method based on deep learning techniques. We first utilize the You Only Look Once (YOLO) v5 deep convolutional neural network algorithm with Distance Intersection over Union–Non Maximum Suppression (DIoU-NMS) to handle occlusion problems. We then design an object removal algorithm to eliminate fish mirror image coordinates. Finally, we adopt an improved DeepSORT algorithm, replacing the original Kalman Filter with an advanced Noise Scale Adaptive (NSA) Kalman Filter to enhance tracking accuracy. In our experiment, we evaluated our method in three simulated real-world fish tank environments, comparing it with the YOLOv5 and YOLOv7 methods. The results show that our method can increase Multiple Object Tracking Accuracy (MOTA) by up to 13.3%, Higher Order Tracking Accuracy (HOTA) by up to 10.0%, and Identification F1 Score by up to 14.5%. These findings confirm that our object removal algorithm effectively improves Multiple Object Tracking Accuracy, which facilitates early disease detection, reduces mortality, and mitigates economic losses—an important consideration given many owners' limited ability to recognize common diseases. [ABSTRACT FROM AUTHOR]
Copyright of Electronics (2079-9292) is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:The popularity of keeping ornamental fish has grown increasingly, as their vibrant presence can provide a calming influence. Accurately assessing the health of ornamental fish is important but challenging. For this, researchers have focused on developing fish tracking methods that provide trajectories for health assessment. However, issues such as mirror images, occlusion, and motion prediction errors can significantly reduce the accuracy of existing algorithms. To address these problems, we propose a novel ornamental fish tracking method based on deep learning techniques. We first utilize the You Only Look Once (YOLO) v5 deep convolutional neural network algorithm with Distance Intersection over Union–Non Maximum Suppression (DIoU-NMS) to handle occlusion problems. We then design an object removal algorithm to eliminate fish mirror image coordinates. Finally, we adopt an improved DeepSORT algorithm, replacing the original Kalman Filter with an advanced Noise Scale Adaptive (NSA) Kalman Filter to enhance tracking accuracy. In our experiment, we evaluated our method in three simulated real-world fish tank environments, comparing it with the YOLOv5 and YOLOv7 methods. The results show that our method can increase Multiple Object Tracking Accuracy (MOTA) by up to 13.3%, Higher Order Tracking Accuracy (HOTA) by up to 10.0%, and Identification F1 Score by up to 14.5%. These findings confirm that our object removal algorithm effectively improves Multiple Object Tracking Accuracy, which facilitates early disease detection, reduces mortality, and mitigates economic losses—an important consideration given many owners' limited ability to recognize common diseases. [ABSTRACT FROM AUTHOR]
ISSN:20799292
DOI:10.3390/electronics14163187