Classification of Knee X-rays That Can Be Diagnosed Radiographically Using Deep Learning and Machine Learning Methods.

Gespeichert in:
Bibliographische Detailangaben
Titel: Classification of Knee X-rays That Can Be Diagnosed Radiographically Using Deep Learning and Machine Learning Methods.
Alternate Title: Radyografik Olarak Tanı Konulabilen Diz Röntgenlerinin Derin Öğrenme ve Makine Öğrenmesi Yöntemleri ile Sınıflandırılması. (Turkish)
Autoren: ÜRETEN, Kemal, DURAN, Semra, MARAŞ, Yüksel, ATALAR, Ebru, ORHAN, Kevser, MARAŞ, Hadi Hakan
Quelle: Duzce University Journal of Science & Technology; tem2025, Vol. 13 Issue 3, p1297-1308, 12p
Schlagwörter: MACHINE learning, KNEE osteoarthritis, SUPPORT vector machines, RANDOM forest algorithms, X-ray imaging, DEEP learning
Abstract (English): The aim of this study is to classify knee osteoarthritis, synovial chondromatosis, Osgood-Schlatter disease, os fabella pathologies that can be diagnosed with plain knee X-rays, and normal knee radiographs with deep learning and machine learning methods. This study was performed on 540 knee osteoarthritis, 151 Osgood_Schlatter disease, 191 knee chondromatosis, 152 os fabella and 523 normal knee X-ray images. First, classification was performed with the VGG-16 network, which is a pretrained deep learning model. Then, the features extracted with the VGG-16 convolution layer were classified with random forest, support vector machines, logistic regression and decision tree machine learning algorithms. With VGG-16 model, 95.3% accuracy, 95.1% sensitivity, 98.7% specificity, 96.8% precision, and 95.9% F1 score results were obtained. In classifying the features extracted from the VGG-16 convolution layer with machine learning algorithms, 98.2% accuracy, 99.0% sensitivity, 98.9% specificity, 98.2% precision and 98.5% F1 score results were obtained with the logistic regression classifier. In this study, which was conducted to classify radiographically detectable knee pathologies, successful results were obtained with the VGG-16 network. The features extracted from the convolution layer of the VGG-16 model were reclassified with machine learning algorithms, logistic regression, support vector machines and random forest classifiers, and improvements in performance metrics were obtained compared to the VGG-16 model. With this proposed method, the performance of deep learning models can be further improved. [ABSTRACT FROM AUTHOR]
Abstract (Turkish): Bu çalışmanın amacı, düz diz röntgenleriyle tanısı konulabilen diz osteoartriti, sinovyal kondromatozis, Osgood-Schlatter hastalığı, os fabella patolojileri ve normal diz radyografilerini derin öğrenme ve makine öğrenmesi yöntemleriyle sınıflandırmaktır. Bu çalışma 540 diz osteoartriti, 151 Osgood_Schlatter hastalığı, 191 diz kondromatozisi, 152 os fabella ve 523 normal diz röntgen görüntüsü üzerinde gerçekleştirildi. Öncelikle önceden eğitilmiş derin öğrenme modeli olan VGG-16 ağı ile sınıflandırma yapıldı. Daha sonra VGG-16 evrişim katmanı ile çıkarılan özellikler, rastgele orman, destek vektör makineleri, lojistik regresyon ve karar ağacı makine öğrenmesi algoritmalarıyla sınıflandırıldı. VGG-16 modeli ile %95,3 doğruluk, %95,1 duyarlılık, %98.7 özgüllük, %96,8 kesinlik ve %95,9 F1 skoru sonuçları elde edildi. VGG-16 evrişim katmanından çıkarılan özelliklerin makine öğrenmesi algoritmaları ile sınıflandırılmasında lojistik regresyon sınıflandırıcısı ile %98,2 doğruluk, %99,0 duyarlılık, %98.9 özgüllük, %98,2 kesinlik ve %98,5 F1 skoru sonuçları elde edilmiştir. Radyografik olarak tanısı konulabilen diz patolojilerinin sınıflandırılması amacıyla yapılan bu çalışmada, VGG-16 ağı ile başarılı sonuçlar elde edilmiştir. VGG-16 modeli evrişim katmanı üzerinden çıkarılan özellikler makine öğrenmesi algoritmaları ile yeniden sınıflandırılmış, lojistik regresyon, destek vektör makineleri ve rastgele orman sınıflandırıcıları ile VGG-16 modeline kıyasla performans metriklerinde iyileşmeler elde edilmiştir. Önerilen bu yöntemle, derin öğrenme modellerinin performansı daha da iyileştirilebilir. [ABSTRACT FROM AUTHOR]
Copyright of Duzce University Journal of Science & Technology is the property of Duzce University Journal of Science & Technology and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:The aim of this study is to classify knee osteoarthritis, synovial chondromatosis, Osgood-Schlatter disease, os fabella pathologies that can be diagnosed with plain knee X-rays, and normal knee radiographs with deep learning and machine learning methods. This study was performed on 540 knee osteoarthritis, 151 Osgood_Schlatter disease, 191 knee chondromatosis, 152 os fabella and 523 normal knee X-ray images. First, classification was performed with the VGG-16 network, which is a pretrained deep learning model. Then, the features extracted with the VGG-16 convolution layer were classified with random forest, support vector machines, logistic regression and decision tree machine learning algorithms. With VGG-16 model, 95.3% accuracy, 95.1% sensitivity, 98.7% specificity, 96.8% precision, and 95.9% F1 score results were obtained. In classifying the features extracted from the VGG-16 convolution layer with machine learning algorithms, 98.2% accuracy, 99.0% sensitivity, 98.9% specificity, 98.2% precision and 98.5% F1 score results were obtained with the logistic regression classifier. In this study, which was conducted to classify radiographically detectable knee pathologies, successful results were obtained with the VGG-16 network. The features extracted from the convolution layer of the VGG-16 model were reclassified with machine learning algorithms, logistic regression, support vector machines and random forest classifiers, and improvements in performance metrics were obtained compared to the VGG-16 model. With this proposed method, the performance of deep learning models can be further improved. [ABSTRACT FROM AUTHOR]
ISSN:21482446
DOI:10.29130/dubited.1626406