Bibliographic Details
| Title: |
A non-sub-sampled shearlet transform-based deep learning sub band enhancement and fusion method for multi-modal images. |
| Authors: |
Sengan, Sudhakar, Gugulothu, Praveen, Alroobaea, Roobaea, Webber, Julian L., Mehbodniya, Abolfazl, Yousef, Amr |
| Source: |
Scientific Reports; 8/12/2025, Vol. 15 Issue 1, p1-26, 26p |
| Subject Terms: |
CONVOLUTIONAL neural networks, IMAGE fusion, DEEP learning, SIGNAL denoising, IMAGE reconstruction, IMAGE enhancement (Imaging systems), CLINICAL decision making |
| Abstract: |
Multi-Modal Medical Image Fusion (MMMIF) has become increasingly important in clinical applications, as it enables the integration of complementary information from different imaging modalities to support more accurate diagnosis and treatment planning. The primary objective of Medical Image Fusion (MIF) is to generate a fused image that retains the most informative features from the Source Images (SI), thereby enhancing the reliability of clinical decision-making systems. However, due to inherent limitations in individual imaging modalities—such as poor spatial resolution in functional images or low contrast in anatomical scans—fused images can suffer from information degradation or distortion. To address these limitations, this study proposes a novel fusion framework that integrates the Non-Subsampled Shearlet Transform (NSST) with a Convolutional Neural Network (CNN) for effective sub-band enhancement and image reconstruction. Initially, each source image is decomposed into Low-Frequency Coefficients (LFC) and multiple High-Frequency Coefficients (HFC) using NSST. The proposed Concurrent Denoising and Enhancement Network (CDEN) is then applied to these sub-bands to suppress noise and enhance critical structural details. The enhanced LFCs are fused using an AlexNet-based activity-level fusion model, while the enhanced HFCs are combined using a Pulse Coupled Neural Network (PCNN) guided by a Novel Sum-Modified Laplacian (NSML) metric. Finally, the fused image is reconstructed via Inverse-NSST (I-NSST). Experimental results prove that the proposed method outperforms existing fusion algorithms, achieving approximately 16.5% higher performance in terms of the QAB/F (edge preservation) metric, along with strong results across both subjective visual assessments and objective quality indices. [ABSTRACT FROM AUTHOR] |
|
Copyright of Scientific Reports is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |