Observation of a bilayer superfluid with interlayer coherence.

Gespeichert in:
Bibliographische Detailangaben
Titel: Observation of a bilayer superfluid with interlayer coherence.
Autoren: Rydow, Erik, Singh, Vijay Pal, Beregi, Abel, Chang, En, Mathey, Ludwig, Foot, Christopher J., Sunami, Shinichi
Quelle: Nature Communications; 8/5/2025, Vol. 16 Issue 1, p1-9, 9p
Schlagwörter: COHERENCE (Physics), JOSEPHSON effect, PHASE oscillations, MONTE Carlo method, BOSE-Einstein condensation, QUANTUM fluids, STATISTICAL correlation, VORTEX motion
Abstract: Controlling the coupling between different degrees of freedom in many-body systems is a powerful technique for engineering novel phases of matter. We create a bilayer system of two-dimensional (2D) ultracold Bose gases and demonstrate the controlled generation of bulk coherence through tunable interlayer Josephson coupling. We probe the resulting correlation properties of both phase modes of the bilayer system: the symmetric phase mode is studied via a noise-correlation method, while the antisymmetric phase fluctuations are directly captured by matter-wave interferometry. The measured correlation functions for both of these modes exhibit a crossover from short-range to quasi-long-range order above a coupling-dependent critical point, thus providing direct evidence of bilayer superfluidity mediated by interlayer coupling. We map out the phase diagram and interpret it with renormalization-group theory and Monte Carlo simulations. Additionally, we elucidate the underlying mechanism through the observation of suppressed vortex excitations in the antisymmetric mode. The authors report the implementation of a bilayer system of 2D ultracold Bose gases with controllable Josephson coupling. This allows characterisation of coupling-induced superfluid phases and their microscopic origin tracing back to vortex binding. [ABSTRACT FROM AUTHOR]
Copyright of Nature Communications is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:Controlling the coupling between different degrees of freedom in many-body systems is a powerful technique for engineering novel phases of matter. We create a bilayer system of two-dimensional (2D) ultracold Bose gases and demonstrate the controlled generation of bulk coherence through tunable interlayer Josephson coupling. We probe the resulting correlation properties of both phase modes of the bilayer system: the symmetric phase mode is studied via a noise-correlation method, while the antisymmetric phase fluctuations are directly captured by matter-wave interferometry. The measured correlation functions for both of these modes exhibit a crossover from short-range to quasi-long-range order above a coupling-dependent critical point, thus providing direct evidence of bilayer superfluidity mediated by interlayer coupling. We map out the phase diagram and interpret it with renormalization-group theory and Monte Carlo simulations. Additionally, we elucidate the underlying mechanism through the observation of suppressed vortex excitations in the antisymmetric mode. The authors report the implementation of a bilayer system of 2D ultracold Bose gases with controllable Josephson coupling. This allows characterisation of coupling-induced superfluid phases and their microscopic origin tracing back to vortex binding. [ABSTRACT FROM AUTHOR]
ISSN:20411723
DOI:10.1038/s41467-025-62277-w