Python tools for structural tasks in chemistry.

Saved in:
Bibliographic Details
Title: Python tools for structural tasks in chemistry.
Authors: Ryzhkov, Fedor V., Ryzhkova, Yuliya E., Elinson, Michail N.
Source: Molecular Diversity; Aug2025, Vol. 29 Issue 4, p3733-3752, 20p
Abstract: In recent decades, the use of computational approaches and artificial intelligence in the scientific environment has become more widespread. In this regard, the popular and versatile programming language Python has attracted considerable attention from scientists in the field of chemistry. It is used to solve a variety of chemical and structural problems, including calculating descriptors, molecular fingerprints, graph construction, and computing chemical reaction networks. Python offers high-quality visualization tools for analyzing chemical spaces and compound libraries. This review is a list of tools for the above tasks, including scripts, libraries, ready-made programs, and web interfaces. Inevitably this manuscript does not claim to be an all-encompassing handbook including all the existing Python-based structural chemistry codes. The review serves as a starting point for scientists wishing to apply automatization or optimization to routine chemistry problems. [ABSTRACT FROM AUTHOR]
Copyright of Molecular Diversity is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:In recent decades, the use of computational approaches and artificial intelligence in the scientific environment has become more widespread. In this regard, the popular and versatile programming language Python has attracted considerable attention from scientists in the field of chemistry. It is used to solve a variety of chemical and structural problems, including calculating descriptors, molecular fingerprints, graph construction, and computing chemical reaction networks. Python offers high-quality visualization tools for analyzing chemical spaces and compound libraries. This review is a list of tools for the above tasks, including scripts, libraries, ready-made programs, and web interfaces. Inevitably this manuscript does not claim to be an all-encompassing handbook including all the existing Python-based structural chemistry codes. The review serves as a starting point for scientists wishing to apply automatization or optimization to routine chemistry problems. [ABSTRACT FROM AUTHOR]
ISSN:13811991
DOI:10.1007/s11030-024-10889-7