A Comparative Assessment of Machine Learning and Deep Learning Models for the Daily River Streamflow Forecasting.

Saved in:
Bibliographic Details
Title: A Comparative Assessment of Machine Learning and Deep Learning Models for the Daily River Streamflow Forecasting.
Authors: Danesh, Malihe, Gharehbaghi, Amin, Mehdizadeh, Saeid, Danesh, Amirhossein
Source: Water Resources Management; Mar2025, Vol. 39 Issue 4, p1911-1930, 20p
Subject Terms: LONG short-term memory, WATER management, MACHINE learning, STANDARD deviations, CONVOLUTIONAL neural networks, DEEP learning
Abstract: Forecasting river streamflow is crucial for hydrological science and optimal water resources management. In this study, six predictive methods were developed, including three machine learning models—random forest (RF), decision tree (DT), and K-nearest neighbors (KNN)—and three deep learning frameworks comprising convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid CNN-LSTM model. Two gauging stations on the McKenzie River in the United States (USGS 14162500 and USGS 14163900) were selected as case studies for model performance evaluation. Error metrics including root mean square error (RMSE), mean absolute error (MAE), determination coefficient (R²), and Kling-Gupta efficiency (KGE) were applied. Results demonstrated that the deep learning models consistently outperformed the machine learning methods for river streamflow forecasting at both sites. The hybrid CNN-LSTM model yielded the most accurate predictions. Specifically, the error metrics for the superior CNN-LSTM model during testing stage were as follows: at USGS 14162500, RMSE = 14.68 m³/s, MAE = 6.29 m³/s, R² = 0.930, and KGE = 0.960; at USGS 14163900, RMSE = 22.54 m³/s, MAE = 8.48 m³/s, R² = 0.882, and KGE = 0.935. [ABSTRACT FROM AUTHOR]
Copyright of Water Resources Management is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Forecasting river streamflow is crucial for hydrological science and optimal water resources management. In this study, six predictive methods were developed, including three machine learning models—random forest (RF), decision tree (DT), and K-nearest neighbors (KNN)—and three deep learning frameworks comprising convolutional neural networks (CNN), long short-term memory (LSTM), and a hybrid CNN-LSTM model. Two gauging stations on the McKenzie River in the United States (USGS 14162500 and USGS 14163900) were selected as case studies for model performance evaluation. Error metrics including root mean square error (RMSE), mean absolute error (MAE), determination coefficient (R²), and Kling-Gupta efficiency (KGE) were applied. Results demonstrated that the deep learning models consistently outperformed the machine learning methods for river streamflow forecasting at both sites. The hybrid CNN-LSTM model yielded the most accurate predictions. Specifically, the error metrics for the superior CNN-LSTM model during testing stage were as follows: at USGS 14162500, RMSE = 14.68 m³/s, MAE = 6.29 m³/s, R² = 0.930, and KGE = 0.960; at USGS 14163900, RMSE = 22.54 m³/s, MAE = 8.48 m³/s, R² = 0.882, and KGE = 0.935. [ABSTRACT FROM AUTHOR]
ISSN:09204741
DOI:10.1007/s11269-024-04052-y