Channel Shortening-Based Single-Carrier Underwater Acoustic Communications in Impulsive Environment.

Saved in:
Bibliographic Details
Title: Channel Shortening-Based Single-Carrier Underwater Acoustic Communications in Impulsive Environment.
Authors: Tu, Xingbin, Li, Zicheng, Wei, Yan, Qu, Fengzhong
Source: Journal of Marine Science & Engineering; Jan2025, Vol. 13 Issue 1, p103, 16p
Subject Terms: DECISION feedback equalizers, UNDERWATER acoustic communication, CHANNEL estimation, WATER waves, LEAST squares
Abstract: Underwater acoustic (UWA) communication encounters significant challenges, including impulsive noise from breaking waves and marine organisms, as well as long-delay taps caused by ocean properties and high transmission rates. To address these issues, we enhance the channel estimation process by introducing iteratively reweighted least squares (IRLS) methods and propose an impulsive noise suppression algorithm. Furthermore, we analyze the inter-frequency interference (IFI) resulting from channel variability and implement IFI cancellation (IFIC) during iterative processing. Furthermore, an IFIC-based dual decision–feedback equalization (DDFE) algorithm is proposed for fast time-varying channels, enabling a considerable reduction in channel length and subsequent equalizer complexity. The proposed IFIC-based DDFE algorithm with impulsive noise suppression has been validated through sea trial data, demonstrating robustness against impulsive noise. Experimental results indicate that the proposed algorithm reduces click signal energy and significantly improves receiver performance compared to traditional DDFE algorithms. This research highlights the effectiveness of adapted UWA communication strategies in environments characterized by impulsive noise and long delay taps, facilitating more reliable UWA communication. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Marine Science & Engineering is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Underwater acoustic (UWA) communication encounters significant challenges, including impulsive noise from breaking waves and marine organisms, as well as long-delay taps caused by ocean properties and high transmission rates. To address these issues, we enhance the channel estimation process by introducing iteratively reweighted least squares (IRLS) methods and propose an impulsive noise suppression algorithm. Furthermore, we analyze the inter-frequency interference (IFI) resulting from channel variability and implement IFI cancellation (IFIC) during iterative processing. Furthermore, an IFIC-based dual decision–feedback equalization (DDFE) algorithm is proposed for fast time-varying channels, enabling a considerable reduction in channel length and subsequent equalizer complexity. The proposed IFIC-based DDFE algorithm with impulsive noise suppression has been validated through sea trial data, demonstrating robustness against impulsive noise. Experimental results indicate that the proposed algorithm reduces click signal energy and significantly improves receiver performance compared to traditional DDFE algorithms. This research highlights the effectiveness of adapted UWA communication strategies in environments characterized by impulsive noise and long delay taps, facilitating more reliable UWA communication. [ABSTRACT FROM AUTHOR]
ISSN:20771312
DOI:10.3390/jmse13010103