Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine.

Gespeichert in:
Bibliographische Detailangaben
Titel: Enhancement of Antioxidant Activity, Stability, and Structure of Heme-Peptides by L-Lysine.
Autoren: Zhang, Yinghui, Cui, Wei, Zhou, Hui, Zou, Lifang, Wang, Zhaoming, Cai, Kezhou, Xu, Baocai
Quelle: Foods; Jan2025, Vol. 14 Issue 2, p192, 15p
Schlagwörter: FLUORESCENCE spectroscopy, PEPTIDES, FLUORIMETRY, INFRARED spectroscopy, IRON ions
Abstract: Porcine blood is rich in protein and has always been the focus of research. Heme-peptides prepared from porcine hemoglobin are susceptible to oxidative degeneration during preparation and storage, thus affecting their function and stability. This study evaluated the enhancement effects of L-lysine (Lys) on recovery rate, antioxidant activity, stability, and structure. The results indicated that adding 1% Lys during enzymatic hydrolysis significantly increased the recovery rate of ferrous heme and peptide content by 93.88% and 15.30% (p < 0.05), respectively, and maximally enhanced antioxidant activity by 37.85% (p < 0.05). The contents of iron, ferrous ion, and ferrous heme in the heme-peptides were significantly increased by 97.52%, 121. 97%, and 74.45% (p < 0.05), respectively. Additionally, Lys improved the resistance to pH, temperature, metal ions, pepsin, and trypsin. Meanwhile, the effects of Lys resulted in heme-peptides with a smaller particle size, higher zeta potentials, and a smoother micromorphology. Fourier-transform infrared spectroscopy and fluorescence spectroscopy analysis showed that Lys enhanced the conformational stability of the heme-peptides. Molecular docking further suggested that hydrogen bonding was the main driver of the connections between Lys and the heme-peptides. This study provides theoretical guidance for the efficient utilization of heme-peptides in the food industry. [ABSTRACT FROM AUTHOR]
Copyright of Foods is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:Porcine blood is rich in protein and has always been the focus of research. Heme-peptides prepared from porcine hemoglobin are susceptible to oxidative degeneration during preparation and storage, thus affecting their function and stability. This study evaluated the enhancement effects of L-lysine (Lys) on recovery rate, antioxidant activity, stability, and structure. The results indicated that adding 1% Lys during enzymatic hydrolysis significantly increased the recovery rate of ferrous heme and peptide content by 93.88% and 15.30% (p < 0.05), respectively, and maximally enhanced antioxidant activity by 37.85% (p < 0.05). The contents of iron, ferrous ion, and ferrous heme in the heme-peptides were significantly increased by 97.52%, 121. 97%, and 74.45% (p < 0.05), respectively. Additionally, Lys improved the resistance to pH, temperature, metal ions, pepsin, and trypsin. Meanwhile, the effects of Lys resulted in heme-peptides with a smaller particle size, higher zeta potentials, and a smoother micromorphology. Fourier-transform infrared spectroscopy and fluorescence spectroscopy analysis showed that Lys enhanced the conformational stability of the heme-peptides. Molecular docking further suggested that hydrogen bonding was the main driver of the connections between Lys and the heme-peptides. This study provides theoretical guidance for the efficient utilization of heme-peptides in the food industry. [ABSTRACT FROM AUTHOR]
ISSN:23048158
DOI:10.3390/foods14020192