An AI-Based Approach for Developing a Recommendation System for Underground Mining Methods Pre-Selection.

Uloženo v:
Podrobná bibliografie
Název: An AI-Based Approach for Developing a Recommendation System for Underground Mining Methods Pre-Selection.
Autoři: Manjate, Elsa Pansilvania Andre, Okada, Natsuo, Ohtomo, Yoko, Adachi, Tsuyoshi, Bene, Bernardo Miguel, Arima, Takahiko, Kawamura, Youhei
Zdroj: Mining; Dec2024, Vol. 4 Issue 4, p747-765, 19p
Témata: ARTIFICIAL neural networks, MINES & mineral resources, ARTIFICIAL intelligence, MINING methodology, SUPERVISED learning
Abstrakt: Selecting the most appropriate mining method to recover mineral resources is a critical decision-making task in mining project development. This study introduces an artificial intelligence-based mining methods recommendation system (AI-MMRS) for the pre-selection of underground mining methods. The study integrates and evaluates the capability of two approaches for mining methods selection (MMS): the memory-based collaborative filtering (CF) approach aided by the UBC-MMS system to predict the top-3 relevant mining methods and supervised machine learning (ML) classification algorithms to enhance the effectiveness and novelty of the AI-MMRS, addressing the limitations of the CF approach. The results reveal that the memory-based CF approach achieves an accuracy ranging from 81.8% to 87.9%. Among the classification algorithms, artificial neural network (ANN) and k-nearest neighbors (KNN) classifiers perform the best, with accuracy levels of 66.7% and 63.6%, respectively. These findings demonstrate the effectiveness and viability of both approaches in MMS, acknowledging their limitations and the need for continuous training and optimization. The proposed AI-MMRS for the pre-selection stage supplemented by the direct involvement of mining professionals in later stages of MMS, has the potential to significantly aid in the MMS decision-making, providing data-driven and experience-based recommendations following the ongoing evolution of mining practices. [ABSTRACT FROM AUTHOR]
Copyright of Mining is the property of MDPI and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:Selecting the most appropriate mining method to recover mineral resources is a critical decision-making task in mining project development. This study introduces an artificial intelligence-based mining methods recommendation system (AI-MMRS) for the pre-selection of underground mining methods. The study integrates and evaluates the capability of two approaches for mining methods selection (MMS): the memory-based collaborative filtering (CF) approach aided by the UBC-MMS system to predict the top-3 relevant mining methods and supervised machine learning (ML) classification algorithms to enhance the effectiveness and novelty of the AI-MMRS, addressing the limitations of the CF approach. The results reveal that the memory-based CF approach achieves an accuracy ranging from 81.8% to 87.9%. Among the classification algorithms, artificial neural network (ANN) and k-nearest neighbors (KNN) classifiers perform the best, with accuracy levels of 66.7% and 63.6%, respectively. These findings demonstrate the effectiveness and viability of both approaches in MMS, acknowledging their limitations and the need for continuous training and optimization. The proposed AI-MMRS for the pre-selection stage supplemented by the direct involvement of mining professionals in later stages of MMS, has the potential to significantly aid in the MMS decision-making, providing data-driven and experience-based recommendations following the ongoing evolution of mining practices. [ABSTRACT FROM AUTHOR]
ISSN:26736489
DOI:10.3390/mining4040042