Integrative bioinformatic and experimental analysis of benzoylbenzodioxol derivatives: hypoglycemic potential in diabetic mice.

Uloženo v:
Podrobná bibliografie
Název: Integrative bioinformatic and experimental analysis of benzoylbenzodioxol derivatives: hypoglycemic potential in diabetic mice.
Autoři: Hawash, Mohammed, Jaradat, Nidal, Abualhasan, Murad, Jadallah, Jazeel, Fashafsheh, Lama, Zaid, Salsabeela, Qamhia, Naim, Qneibi, Mohammad, Qaoud, Mohammed T., Tari, Ozden, Merski, Matthew, Boşnak, Ahmet S., Mousa, Ahmed, Issa, Linda, Eid, Ahmad M.
Zdroj: 3 Biotech; 9/28/2024, Vol. 14 Issue 10, p1-14, 14p
Témata: DENSITY functional theory, BLOOD sugar, HYPOGLYCEMIC agents, MOLECULAR docking, FUNCTIONAL analysis
Abstrakt: We investigated the hypoglycemic activity and pharmacokinetic study of two synthesized benzoyl benzodioxol derivatives, compound I (methyl 2-(6-(2-bromobenzoyl)benzo[d][1,3]dioxol-5-yl)acetate), and compound II, 2-(6-benzoylbenzo[d][1,3]dioxol-5-yl)acetic acid, which showed very strong α-amylase inhibiting activity in our previous study. Then, diabetes was induced by the injection of streptozotocin to mice. The molecular docking simulations and analyses of density functional theory analyses were conducted to study the binding interactions with human pancreatic alpha-amylase, and their pharmacokinetic properties were further evaluated by ADMET profiling. Compound I showed the most important hypoglycemic effect, decreasing the blood glucose by 32.4%, higher than that of compound II by 14.8% and even the positive control acarbose by 22.9%. Histopathological examination revealed that diabetic livers showed portal inflammation with some apoptotic hepatocytes due to streptozotocin treatment, whereas controls without any treatment maintained normal liver architecture. Molecular docking studies gave results for the best binding affinity of the compound I, through its strong water bridges and π–π interactions, and also through analysis with density functional theory, was more stable and reactive when compared to compound II. Further ADMET analysis showed that both compounds shared a promising pharmacokinetic profile, and compound I had the potential for CNS penetration. Thus, compound I was selected as the best candidate for developing new hypoglycemic agents with potent efficacy, good binding interactions, and excellent pharmacokinetic properties. [ABSTRACT FROM AUTHOR]
Copyright of 3 Biotech is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Databáze: Complementary Index
Popis
Abstrakt:We investigated the hypoglycemic activity and pharmacokinetic study of two synthesized benzoyl benzodioxol derivatives, compound I (methyl 2-(6-(2-bromobenzoyl)benzo[d][1,3]dioxol-5-yl)acetate), and compound II, 2-(6-benzoylbenzo[d][1,3]dioxol-5-yl)acetic acid, which showed very strong α-amylase inhibiting activity in our previous study. Then, diabetes was induced by the injection of streptozotocin to mice. The molecular docking simulations and analyses of density functional theory analyses were conducted to study the binding interactions with human pancreatic alpha-amylase, and their pharmacokinetic properties were further evaluated by ADMET profiling. Compound I showed the most important hypoglycemic effect, decreasing the blood glucose by 32.4%, higher than that of compound II by 14.8% and even the positive control acarbose by 22.9%. Histopathological examination revealed that diabetic livers showed portal inflammation with some apoptotic hepatocytes due to streptozotocin treatment, whereas controls without any treatment maintained normal liver architecture. Molecular docking studies gave results for the best binding affinity of the compound I, through its strong water bridges and π–π interactions, and also through analysis with density functional theory, was more stable and reactive when compared to compound II. Further ADMET analysis showed that both compounds shared a promising pharmacokinetic profile, and compound I had the potential for CNS penetration. Thus, compound I was selected as the best candidate for developing new hypoglycemic agents with potent efficacy, good binding interactions, and excellent pharmacokinetic properties. [ABSTRACT FROM AUTHOR]
ISSN:2190572X
DOI:10.1007/s13205-024-04103-6