Early prediction of ventricular peritoneal shunt dependency in aneurysmal subarachnoid haemorrhage patients by recurrent neural network-based machine learning using routine intensive care unit data.

Saved in:
Bibliographic Details
Title: Early prediction of ventricular peritoneal shunt dependency in aneurysmal subarachnoid haemorrhage patients by recurrent neural network-based machine learning using routine intensive care unit data.
Authors: Schweingruber, Nils, Bremer, Jan, Wiehe, Anton, Mader, Marius Marc-Daniel, Mayer, Christina, Woo, Marcel Seungsu, Kluge, Stefan, Grensemann, Jörn, Quandt, Fanny, Gempt, Jens, Fischer, Marlene, Thomalla, Götz, Gerloff, Christian, Sauvigny, Jennifer, Czorlich, Patrick
Source: Journal of Clinical Monitoring & Computing; Oct2024, Vol. 38 Issue 5, p1175-1186, 12p
Abstract: Aneurysmal subarachnoid haemorrhage (aSAH) can lead to complications such as acute hydrocephalic congestion. Treatment of this acute condition often includes establishing an external ventricular drainage (EVD). However, chronic hydrocephalus develops in some patients, who then require placement of a permanent ventriculoperitoneal (VP) shunt. The aim of this study was to employ recurrent neural network (RNN)-based machine learning techniques to identify patients who require VP shunt placement at an early stage. This retrospective single-centre study included all patients who were diagnosed with aSAH and treated in the intensive care unit (ICU) between November 2010 and May 2020 (n = 602). More than 120 parameters were analysed, including routine neurocritical care data, vital signs and blood gas analyses. Various machine learning techniques, including RNNs and gradient boosting machines, were evaluated for their ability to predict VP shunt dependency. VP-shunt dependency could be predicted using an RNN after just one day of ICU stay, with an AUC-ROC of 0.77 (CI: 0.75–0.79). The accuracy of the prediction improved after four days of observation (Day 4: AUC-ROC 0.81, CI: 0.79–0.84). At that point, the accuracy of the prediction was 76% (CI: 75.98–83.09%), with a sensitivity of 85% (CI: 83–88%) and a specificity of 74% (CI: 71–78%). RNN-based machine learning has the potential to predict VP shunt dependency on Day 4 after ictus in aSAH patients using routine data collected in the ICU. The use of machine learning may allow early identification of patients with specific therapeutic needs and accelerate the execution of required procedures. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Clinical Monitoring & Computing is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
Description
Abstract:Aneurysmal subarachnoid haemorrhage (aSAH) can lead to complications such as acute hydrocephalic congestion. Treatment of this acute condition often includes establishing an external ventricular drainage (EVD). However, chronic hydrocephalus develops in some patients, who then require placement of a permanent ventriculoperitoneal (VP) shunt. The aim of this study was to employ recurrent neural network (RNN)-based machine learning techniques to identify patients who require VP shunt placement at an early stage. This retrospective single-centre study included all patients who were diagnosed with aSAH and treated in the intensive care unit (ICU) between November 2010 and May 2020 (n = 602). More than 120 parameters were analysed, including routine neurocritical care data, vital signs and blood gas analyses. Various machine learning techniques, including RNNs and gradient boosting machines, were evaluated for their ability to predict VP shunt dependency. VP-shunt dependency could be predicted using an RNN after just one day of ICU stay, with an AUC-ROC of 0.77 (CI: 0.75–0.79). The accuracy of the prediction improved after four days of observation (Day 4: AUC-ROC 0.81, CI: 0.79–0.84). At that point, the accuracy of the prediction was 76% (CI: 75.98–83.09%), with a sensitivity of 85% (CI: 83–88%) and a specificity of 74% (CI: 71–78%). RNN-based machine learning has the potential to predict VP shunt dependency on Day 4 after ictus in aSAH patients using routine data collected in the ICU. The use of machine learning may allow early identification of patients with specific therapeutic needs and accelerate the execution of required procedures. [ABSTRACT FROM AUTHOR]
ISSN:13871307
DOI:10.1007/s10877-024-01151-4