Water orientation on platinum surfaces controlled by step sites.

Gespeichert in:
Bibliographische Detailangaben
Titel: Water orientation on platinum surfaces controlled by step sites.
Autoren: Nagatsuka, Naoki, Otsuki, Takumi, Kamibashira, Shota, Koitaya, Takanori, Watanabe, Kazuya
Quelle: Journal of Chemical Physics; 9/7/2024, Vol. 161 Issue 9, p1-11, 11p
Schlagwörter: ULTRAHIGH vacuum, HYDROGEN bonding, PLATINUM, TERRACING, MOLECULES
Abstract: In this work, the adsorption structure of deuterated water on the stepped platinum surface is studied under an ultra-high vacuum by using heterodyne-detected sum-frequency generation spectroscopy. On a pristine Pt(553), D2O molecules adsorbed at the step sites act as hydrogen bond (H-bond) donors to the adjacent terrace sites. This ensures the net D-down orientation at the terrace sites away from the steps. In particular, the pre-adsorption of oxygen atoms at the step sites significantly alters the D-down configuration. The oxygen pre-adsorption leads to a spontaneous dissociation of the post-adsorbed water molecules at the step to form hydroxyl (OD) species. Since the hydroxyl at the step acts as a strong H-bond acceptor, D2O at the terrace no longer maintains the D-down configuration and adopts flat-lying configurations, significantly reducing the number of D-down molecules at the terrace. Density-functional theoretical calculations support these pictures. This work demonstrates the critical role of steps in controlling the net orientation of the interfacial water and provides an important reference for future considerations of the reactions at electrochemical interfaces. [ABSTRACT FROM AUTHOR]
Copyright of Journal of Chemical Physics is the property of American Institute of Physics and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Datenbank: Complementary Index
Beschreibung
Abstract:In this work, the adsorption structure of deuterated water on the stepped platinum surface is studied under an ultra-high vacuum by using heterodyne-detected sum-frequency generation spectroscopy. On a pristine Pt(553), D<subscript>2</subscript>O molecules adsorbed at the step sites act as hydrogen bond (H-bond) donors to the adjacent terrace sites. This ensures the net D-down orientation at the terrace sites away from the steps. In particular, the pre-adsorption of oxygen atoms at the step sites significantly alters the D-down configuration. The oxygen pre-adsorption leads to a spontaneous dissociation of the post-adsorbed water molecules at the step to form hydroxyl (OD) species. Since the hydroxyl at the step acts as a strong H-bond acceptor, D<subscript>2</subscript>O at the terrace no longer maintains the D-down configuration and adopts flat-lying configurations, significantly reducing the number of D-down molecules at the terrace. Density-functional theoretical calculations support these pictures. This work demonstrates the critical role of steps in controlling the net orientation of the interfacial water and provides an important reference for future considerations of the reactions at electrochemical interfaces. [ABSTRACT FROM AUTHOR]
ISSN:00219606
DOI:10.1063/5.0221288