Bibliographic Details
| Title: |
E-Tenon: An efficient privacy-preserving secure open data sharing scheme for EHR system. |
| Authors: |
Gope, Prosanta, Lin, Zhihui, Yang, Yang, Ning, Jianting |
| Source: |
Journal of Computer Security; 2024, Vol. 32 Issue 4, p319-348, 30p |
| Subject Terms: |
DATABASES, ELECTRONIC health records, HEALTH care industry, MEDICAL personnel, INFORMATION sharing |
| Abstract: |
The transition from paper-based information to Electronic-Health-Records (EHRs) has driven various advancements in the modern healthcare industry. In many cases, patients need to share their EHR with healthcare professionals. Given the sensitive and security-critical nature of EHRs, it is essential to consider the security and privacy issues of storing and sharing EHR. However, existing security solutions excessively encrypt the whole database, thus requiring the entire database to be decrypted for each access request, which is time-consuming. On the other hand, the use of EHR for medical research (e.g., development of precision medicine and diagnostics techniques) and optimisation of practices in healthcare organisations require the EHR to be analysed. To achieve that, they should be easily accessible without compromising the patient's privacy. In this paper, we propose an efficient technique called E-Tenon that not only securely keeps all EHR publicly accessible but also provides the desired security features. To the best of our knowledge, this is the first work in which an Open Database is used for protecting EHR. The proposed E-Tenon empowers patients to securely share their EHR under their own multi-level, fine-grained access policies. Analyses show that our system outperforms existing solutions in terms of computational complexity. [ABSTRACT FROM AUTHOR] |
|
Copyright of Journal of Computer Security is the property of Sage Publications Inc. and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Database: |
Complementary Index |