Podrobná bibliografia
| Názov: |
Observation of the antimatter hypernucleus H¯Λ¯4. |
| Autori: |
Abdulhamid, M. I., Aboona, B. E., Adam, J., Adamczyk, L., Adams, J. R., Aggarwal, I., Aggarwal, M. M., Ahammed, Z., Aschenauer, E. C., Aslam, S., Atchison, J., Bairathi, V., Cap, J. G. Ball, Barish, K., Bellwied, R., Bhagat, P., Bhasin, A., Bhatta, S., Bhosale, S. R., Bielcik, J. |
| Zdroj: |
Nature; Aug2024, Vol. 632 Issue 8027, p1026-1031, 6p |
| Abstrakt: |
At the origin of the Universe, an asymmetry between the amount of created matter and antimatter led to the matter-dominated Universe as we know it today. The origins of this asymmetry remain unknown so far. High-energy nuclear collisions create conditions similar to the Universe microseconds after the Big Bang, with comparable amounts of matter and antimatter1–6. Much of the created antimatter escapes the rapidly expanding fireball without annihilating, making such collisions an effective experimental tool to create heavy antimatter nuclear objects and to study their properties7–14, hoping to shed some light on the existing questions on the asymmetry between matter and antimatter. Here we report the observation of the antimatter hypernucleus H ¯ Λ ¯ 4 , composed of a Λ ¯ , an antiproton and two antineutrons. The discovery was made through its two-body decay after production in ultrarelativistic heavy-ion collisions by the STAR experiment at the Relativistic Heavy Ion Collider15,16. In total, 15.6 candidate H ¯ Λ ¯ 4 antimatter hypernuclei are obtained with an estimated background count of 6.4. The lifetimes of the antihypernuclei H ¯ Λ ¯ 3 and H ¯ Λ ¯ 4 are measured and compared with the lifetimes of their corresponding hypernuclei, testing the symmetry between matter and antimatter. Various production yield ratios among (anti)hypernuclei (hypernuclei and/or antihypernuclei) and (anti)nuclei (nuclei and/or antinuclei) are also measured and compared with theoretical model predictions, shedding light on their production mechanisms.An antimatter hypernucleus formed by an anti-lambda hadron, an antiproton and two antineutrons was observed through its two-body decay after production in ultrarelativistic heavy-ion collisions. [ABSTRACT FROM AUTHOR] |
|
Copyright of Nature is the property of Springer Nature and its content may not be copied or emailed to multiple sites without the copyright holder's express written permission. Additionally, content may not be used with any artificial intelligence tools or machine learning technologies. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.) |
| Databáza: |
Complementary Index |